流计算

首页 标签 流计算
# 流计算 #
关注
31321内容
流计算精品翻译: The Dataflow Model
我们提出了Dataflow模型,并详细地阐述了它的语义,设计的核心原则,以及在实践开发过程中对模型的检验。
OpenCV/Python/dlib眨眼检测
图像识别的新思路:眼睛纵横比,看看大牛如果用这种思路玩转识别眨眼动作!
Flink SQL 功能解密系列 —— 流式 TopN 挑战与实现
TopN 是统计报表和大屏非常常见的功能,主要用来实时计算排行榜。流式的 TopN 不同于批处理的 TopN,它的特点是持续的在内存中按照某个统计指标(如出现次数)计算 TopN 排行榜,然后当排行榜发生变化时,发出更新后的排行榜。
| |
来自: 云存储
表格存储Tablestore权威指南(持续更新)
表格存储本着提升用户体验的思路,打造《表格存储Tablestore权威指南》。为用户提供可借鉴的开发指导、经典案例。经典案例按照场景应用类型划分,目前提供五类场景:元数据、消息数据、轨迹溯源、科学大数据以及物联网;每个类型下都会提供多种经典场景。
和封神一起“深挖”Spark
2016云栖大会·北京峰会于8月9号在国家会议中心拉开帷幕,在云栖社区开发者技术专场中,来自阿里云技术专家曹龙(封神)为在场的听众带来《Deep dive into Spark》精彩分享。 关于分享者 曹龙,花名封神,专注在大数据领域,6年分布式引擎研发经验。先后研发上万台Hadoop、ODPS
Flink 原理与实现:Window 机制
Flink 认为 Batch 是 Streaming 的一个特例,所以 Flink 底层引擎是一个流式引擎,在上面实现了流处理和批处理。而窗口(window)就是从 Streaming 到 Batch 的一个桥梁。Flink 提供了非常完善的窗口机制,这是我认为的 Flink 最大的亮点之一(其他的亮点包括消息乱序处理,和 checkpoint 机制)。本文我们将介绍流式处理中的窗口概念,介绍 F
为什么说流处理即未来?
本文整理自 Flink 创始公司 Ververica 联合创始人兼 CTO - Stephan 在 Flink Forward China 2018 上的演讲《Stream Processing takes on Everything》。
免费试用