卷积神经网络实战(可视化部分)——使用keras识别猫咪
在近些年,深度学习领域的卷积神经网络(CNNs或ConvNets)在各行各业为我们解决了大量的实际问题。但是对于大多数人来说,CNN仿佛戴上了神秘的面纱。我经常会想,要是能将神经网络的过程分解,看一看每一个步骤是什么样的结果该有多好!这也就是这篇博客存在的意义。
Kibana:数据分析的可视化利器
阿里云Elastisearch集成了可视化工具Kibana,用户可以使用Kibana的开发工具便捷的查询和分析存储在Elastisearch中的数据。除了柱状图、线状图、饼图、环形图等经典可视化功能外,还拥有地理位置分析、数据图谱分析、时序数据分析等高级功能。
DataV中的回调ID是个什么鬼?
很多朋友经常来询问,组件配置当中有个回调ID
比如这个:
还有这个:
下面就来解释一下回调ID究竟是干嘛用
步骤一:设置回调ID
回调ID可以理解为参数变量,可以用于控制组件之间参数的传递,从而达到交互的目的。
诠释数据降维算法:一文讲尽t-分布邻域嵌入算法(t-SNE)如何有效利用
t-分布领域嵌入算法(t-SNE, t-distributed Stochastic Neighbor Embedding )是目前一个非常流行的对高维度数据进行降维的算法, 由Laurens van der Maaten和 Geoffrey Hinton于2008年提出。这个算法已经在机器学习领域
如何轮播 DataV 大屏
如何轮播 DataV 大屏
当你使用 DataV 制作了足够多的大屏时,一定会冒出一个需求:轮流播放大屏页面,不要怕,一分钟就可以搞定
安装 Chrome 插件 TabCarousel
首先安装神器插件 TabCarousel
使用
安装完成之后,地址栏右侧会出现这么个小图标 。
仅使用NumPy完成卷积神经网络CNN的搭建(附Python代码)
现有的Caffe、TensorFlow等工具箱已经很好地实现CNN模型,但这些工具箱需要的硬件资源比较多,不利于初学者实践和理解。因此,本文教大家如何仅使用NumPy来构建卷积神经网络(Convolutional Neural Network , CNN)模型,具体实现了卷积层、ReLU激活函数层以及最大池化层(max pooling),代码简单,讲解详细。
LC3视角:Kubernetes下日志采集、存储与处理技术实践
在Kubernetes服务化、日志处理实时化以及日志集中式存储趋势下,Kubernetes日志处理上也遇到的新挑战,包括:容器动态采集、大流量性能瓶颈、日志路由管理等问题。本文介绍了“Logtail + 日志服务 + 生态”架构,介绍了:Logtail客户端在Kubernetes日志采集场景下的优势;日志服务作为基础设施一站式解决实时读写、HTAP两大日志强需求;日志服务数据的开放性以及与云产品、开源社区相结合,在实时计算、可视化、采集上为用户提供的丰富选择。