实战阿里通义灵码极速编程-截屏-OCR-OLlama篇
通过实际案例展示阿里通义灵码如何极大提高编程效率。以开发屏幕截图OCR Python程序为例,使用Win10、Anaconda3、VS Code及通义灵码插件。经过四次提问与优化,从截屏选择矩形区域到调用大模型进行OCR识别,整个过程仅耗时半小时,最终形成可运行的控制台程序。加入界面开发后,总用时2小时,显著提升开发速度和质量。
SigLIP 2:多语言语义理解、定位和密集特征的视觉语言编码器
SigLIP 2 是一种改进的多语言视觉-语言编码器系列,通过字幕预训练、自监督学习和在线数据管理优化性能。它在零样本分类、图像-文本检索及视觉表示提取中表现卓越,支持多分辨率处理并保持图像纵横比。模型提供 ViT-B 至 g 四种规格,采用 WebLI 数据集训练,结合 Sigmoid 损失与自蒸馏等技术提升效果。实验表明,SigLIP 2 在密集预测、定位任务及多模态应用中显著优于前代和其他基线模型。
OCR技术:解锁文字识别的无限可能
OCR(光学字符识别)技术是数字化浪潮中的关键工具,可将纸质文档、手写笔记或复杂背景下的文字图像转化为可编辑文本。本文从图像采集、预处理、字符识别到文本校正,全面解析OCR技术的原理,并探讨其在智能办公、智慧交通、便捷生活等领域的广泛应用。未来,OCR将与自然语言处理、计算机视觉等技术深度融合,推动智能化和综合化发展。通过开放生态系统和政策支持,开发者可探索更多创新场景,如古籍数字化、盲人阅读等,为社会带来更多价值。