算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10834内容
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
大模型中 .safetensors 文件、.ckpt文件、.gguf和.pth以及.bin文件区别、加载和保存以及转换方式
本文讨论了大模型中不同文件格式如`.safetensors`、`.ckpt`、`.gguf`、`.pth`和`.bin`的区别、用途以及如何在TensorFlow、PyTorch和ONNX等框架之间进行加载、保存和转换。
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
|
10月前
| |
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
浅析GPU通信技术(上)-GPUDirect P2P
1. 背景 GPU在高性能计算和深度学习加速中扮演着非常重要的角色, GPU的强大的并行计算能力,大大提升了运算性能。随着运算数据量的不断攀升,GPU间需要大量的交换数据,GPU通信性能成为了非常重要的指标。
免费试用