决策智能

首页 标签 决策智能
# 决策智能 #
关注
2430内容
基于阿里云通义星尘实现多智能体(Multi-agent)协同工作的构想与尝试
近年来,大规模预训练模型(大模型)快速发展,其能力显著增强,尤其是在语言理解和生成方面取得了突破。然而,尽管大模型强大,但仍需被动响应指令,为此,研究转向了更具自主性的新范式——智能体(AI agent)。不同于仅执行命令的大模型,智能体不仅能理解复杂指令,还能规划行动步骤并在特定领域自我学习与改进。为进一步提高处理复杂任务的能力,多智能体(Multi-Agent)系统应运而生,多个智能体通过协作、交流信息和共享资源,共同完成更为复杂精细的任务。本文探讨了如何利用阿里云的通义星尘实现基础的多智能体协同工作,介绍了智能体的概念、优势及局限性,并通过具体案例展示了如何构建协作型多智能体系统。
一文读懂deepSpeed:深度学习训练的并行化
DeepSpeed 是由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。通过创新的并行化策略、内存优化技术(如 ZeRO)及混合精度训练,DeepSpeed 显著提升了训练速度并降低了资源需求。它支持多种并行方法,包括数据并行、模型并行和流水线并行,同时与 PyTorch 等主流框架无缝集成,提供了易用的 API 和丰富的文档支持。DeepSpeed 不仅大幅减少了内存占用,还通过自动混合精度训练提高了计算效率,降低了能耗。其开源特性促进了 AI 行业的整体进步,使得更多研究者和开发者能够利用先进优化技术,推动了 AI 在各个领域的广泛应用。
如何构建和调优高可用性的Agent?浅谈阿里云服务领域Agent构建的方法论
本文深入探讨了Agent智能体的概念、技术挑战及实际落地方法,涵盖了从狭义到广义的Agent定义、构建过程中的四大挑战(效果不稳定、规划权衡、领域知识集成、响应速度),并提出了相应的解决方案。文章结合阿里云服务领域的实践经验,总结了Agent构建与调优的完整路径,为推动Agent在To B领域的应用提供了有价值的参考。
|
2月前
| |
AI智能体框架怎么选?7个主流工具详细对比解析
大语言模型需借助AI智能体实现“理解”到“行动”的跨越。本文解析主流智能体框架,从RelevanceAI、smolagents到LangGraph,涵盖技术门槛、任务复杂度、社区生态等选型关键因素,助你根据项目需求选择最合适的开发工具,构建高效、可扩展的智能系统。
|
11月前
| |
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
本项目旨在解决智能体的“超级入口”问题,通过开发基于意图识别的多智能体框架,实现用户通过单一交互入口使用所有智能体。项目依托阿里开源的Qwen2.5大模型,利用其强大的FunctionCall能力,精准识别用户意图并调用相应智能体。 核心功能包括: - 意图识别:基于Qwen2.5的大模型方法调用能力,准确识别用户意图。 - 业务调用中心:解耦框架与业务逻辑,集中处理业务方法调用,提升系统灵活性。 - 会话管理:支持连续对话,保存用户会话历史,确保上下文连贯性。 - 流式返回:支持打字机效果的流式返回,增强用户体验。 感谢Qwen2.5系列大模型的支持,使项目得以顺利实施。
多智能体协作平台(MCP)实现多供应商AI生态系统中的互操作性
在现代人工智能(AI)领域,智能体的互操作性是实现系统协同的关键要素。随着多个供应商提供不同的智能体产品,如何在复杂的生态系统中构建互操作性的基础设施变得尤为重要。本文将探讨如何构建一个支持多供应商智能体互操作性的生态体系,重点讨论多供应商环境中的MCP(Multi-Agent Collaborative Platform)架构,解决不同智能体之间的协作与资源共享问题。
|
15天前
|
3个月圈粉百万,这个AI应用在海外火了
不知道大家还记不记得,我之前推荐过一个叫 Agnes 的 AI 应用,也是当时在 WAIC 了解到的。
|
25天前
| |
智能体协作革命:基于LangGraph实现复杂任务自动分工
本文探讨大模型应用中多智能体协作的必要性,剖析单智能体局限,并基于LangGraph框架详解多智能体系统构建。通过子图状态共享与Network架构实战,展示如何打造高效、可控的AI协作系统,助力迈向组织级AI。建议收藏,深入学习。
增强智能与人工智能趋向融合,人机协同新时代正在到来
几十年少有往来的人工智能与增强智能,正在走向协同融合 增强智能与人工智能趋向融合,人机协同新时代正在到来
腾讯AI单挑王者荣耀职业玩家,“绝悟”技术细节首次披露!
腾讯王者荣耀AI“绝悟”的论文终于发表了!“绝悟”制霸王者荣耀世界冠军杯、在2100多场和顶级业余玩家体验测试中胜率达到99.8%。腾讯AI Lab提出一种深度强化学习框架,并探索了一些算法层面的创新,对MOBA 1v1 游戏这样的多智能体竞争环境进行了大规模的高效探索。
免费试用