决策智能

首页 标签 决策智能
# 决策智能 #
关注
2078内容
geatpy遗传算法包使用介绍
Geatpy是国内几所高校做的一个开源遗传算法包,是一个高性能实用型进化算法工具箱,提供许多已实现的进化算法中各项重要操作的库函数,并提供一个高度模块化、耦合度低的面向对象的进化算法框架,利用“定义问题类 + 调用算法模板”的模式来进行进化优化,可用于求解单目标优化、多目标优化、复杂约束优化、组合优化、混合编码进化优化等。
【强化学习】常用算法之一 “Q-learning”
Q-learning算法是一种基于强化学习的无模型学习方法,通过学习到目标系统的Q值函数来解决智能体在给定环境下的最优决策策略问题。Q-learning算法是基于后验策略方法,即学习出目标系统的价值函数Q之后,通过使用某种策略来最大化该价值函数,称之为后验策略。Q-learning算法是偏差-方差权衡的算法,在偏差较高的情况下可以在基于模型的强化学习中找到一个接近最优策略的解决方案。同时它也具有较高的收敛速度和广泛的适用性,因为其只需要存储一个值函数,不需要存储模型。
神经网络:模拟人脑以实现智能决策
神经网络作为模拟人脑神经元工作原理的模型,在人工智能领域发挥了重要作用。从图像识别到自然语言处理,神经网络在多个领域展现出强大的能力。随着技术的不断进步,神经网络有望在未来实现更高级别的智能决策,为人工智能的发展带来新的机遇和挑战。
Multi-Agent实践第2期: @智能体 你怎么看?
我们将带你体验如何实现一个更具互动性的多智能体群聊:你可以直接"@"提及某个智能体来引发对话。
|
7月前
|
【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论
【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论
免费试用