决策智能

首页 标签 决策智能
# 决策智能 #
关注
2078内容
|
7月前
|
Autogen4j: the Java version of Microsoft AutoGen
Java version of Microsoft AutoGen, Enable Next-Gen Large Language Model Applications
如何在因果推断中更好地利用数据?
本报告从两个方面来介绍我们如何利用更多的数据来做好因果推断,一个是利用历史对照数据来显式缓解混淆偏差,另一个是多源数据融合下的因果推断。
|
7月前
|
【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
【AI Agent系列】【MetaGPT多智能体学习】1. 再理解 AI Agent - 经典案例和热门框架综述
简述AI漏洞修复研究现状及发展方向
鲁军磊先生的演讲聚焦AI在网络安全中的应用,特别是自动化漏洞修复。他讨论了大模型技术的最新进展,AI如何增强漏洞发现与修复,并介绍了AI智能体的三种协作模式。传统漏洞修复流程从手工审计到智能化挖掘逐步演进,而AI技术通过智能决策和自动化执行提高效率。未来趋势包括智能化防御、跨域协同、安全合规自动化、隐私保护强化和安全技能普及,以及可持续安全生态建设。AI正重塑网络安全领域,推动更高效、精准的防御策略。
Multi-Agent实践第9期: 多智能体的升级体验
AgentScope 的新版本主要从 RAG,可视化和系统提示优化三个角度进行了更新,旨在降低开发者的开发代价,提供更加友好的开发体验。
|
4月前
|
震惊!多角色 Agent 携手合作,竟能如此高效搞定复杂任务,背后秘密大揭晓!
在复杂任务环境中,单个智能体常因能力与资源限制而难以应对。多智能体系统(multi-agent systems)通过将任务分解并分配给各具专长的智能体,实现了高效协同工作。例如,在物流配送中,不同智能体分别处理路线规划、货物装载与交通监控,确保任务准确高效完成。同样,在大型游戏开发项目里,各智能体专注剧情设计、美术创作等特定领域,显著提升项目质量和开发速度。通过共享信息、协商决策等方式,多智能体系统展现出强大灵活性与适应性,为物流、软件开发等领域带来新机遇。
|
3月前
| |
来自: 云原生
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
|
2月前
|
仿生机器人:自然界灵感的工程应用
【10月更文挑战第14天】仿生机器人作为自然界灵感与工程技术的完美结合,正逐步改变着我们的生活和工作方式。通过深入了解其设计原理、关键技术、应用领域以及未来的发展趋势,我们可以更加清晰地看到仿生机器人在推动科技创新和社会发展中的重要作用。让我们共同期待仿生机器人在未来带来的更多惊喜和变革!
免费试用