决策智能

首页 标签 决策智能
# 决策智能 #
关注
2363内容
WK
|
12月前
|
PSO算法的缺点有哪些
粒子群优化(PSO)算法是一种基于群体协作的随机搜索方法,源自对鸟群觅食行为的模拟。尽管其在多领域展现了独特优势,但也存在显著缺点:易陷局部最优、搜索精度不足、高度依赖参数设置、理论基础薄弱、适用范围有限及早熟收敛问题。针对这些问题,可通过结合其他优化算法、调整参数及改进更新公式等方式提升其性能。
|
6月前
|
指南:Grok中文版 _Grok 3 中文版本国内在线使用
Grok中文版都让用户能够不受限制地体验到最前沿的人工智能技术。通过这个平台,国内用户能够突破网络的束缚,尽情享受AI带来的便利与乐趣。
|
2月前
|
CrewAI与LangGraph:下一代智能体编排平台深度测评
在过去的一年里,我深度研究了多种智能体编排平台的技术演进,见证了从单一智能体应用向多智能体协作系统的转变。随着大语言模型能力的不断提升,**智能体编排(Agent Orchestration)**已成为构建复杂AI系统的核心技术。在众多新兴框架中,CrewAI以其直观的团队协作模式和LangGraph以其强大的状态图编排能力,代表了两种截然不同的技术路径。 CrewAI采用**代码优先(Code-First)的编排方式,将智能体建模为具有特定角色和目标的团队成员;而LangGraph则提供可视化编排(Visual Orchestration)**能力,通过状态图来管理复杂的工作流程。这两种平台
|
2月前
|
单一智能体 + MCP看似全能,为何却隐藏诸多局限?
本文产品专家三桥君对比了AI应用开发中的两种架构选择:单一智能体配合MCP协议和多智能体系统(MAS)。单一智能体架构通过MCP协议调用工具,适合中小型项目和快速上线,但存在中心化瓶颈和单点故障风险。MAS由多个智能体协作,支持专业分工和高并发,但设计复杂、协调成本高。三桥君通过客户服务助手、投资分析等案例展示了不同架构的适用场景,并提供了技术栈推荐和部署建议,强调应根据业务需求、资源和技术能力选择合适架构,平衡效率与复杂度。
|
26天前
| |
AI智能体开发指南:从门外汉到老司机
从零开始了解AI智能体的核心概念,区分工作流与智能代理,掌握实际构建技巧。让复杂的AI技术变得像聊天一样简单!
|
13天前
| |
HiRAG:用分层知识图解决复杂推理问题
HiRAG是一种分层检索增强生成系统,专为复杂知识图的多层推理设计。它通过构建从具体实体到抽象概念的多层次结构,提升知识推理深度与连贯性,有效减少大模型幻觉,适用于天体物理、理论物理等专业领域。
|
2天前
|
【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)
【完美复现】面向配电网韧性提升的移动储能预布局与动态调度策略【IEEE33节点】(Matlab代码实现)
变邻域搜索(VNS)原理梳理和应用细节-附求解VRPTW问题C++代码
变邻域搜索(VNS)原理梳理和应用细节-附求解VRPTW问题C++代码
AgentScope 与 MCP:实践、思考与展望
AgentScope 作为一款功能强大的开源多智能体开发框架,为开发者提供了智能体构建、工具使用、多智能体编排等全方位支持。
Multi-Agent实践第4期:智能体的“想”与“做”-ReAct Agent
本期文章,我们将向大家展示如何使用AgentScope内置的ReAct智能体解决更为复杂的问题。
免费试用