基于蚁群算法的旅行商问题(TSP)求解
蚁群算法(ant colony algorithm,ACA)是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem,TSP),并取得了较好的实验结果。
基于agentscope的多智能体游戏场景-骗子酒馆
骗子酒馆是一款基于多智能体系统的在线社交推理游戏,玩家通过掷骰子和扑克牌进行智力和心理博弈,结合大语言模型技术,每个游戏角色由AI扮演,具备独特的性格和决策逻辑,提供高度沉浸式的体验。游戏采用黑板通信模式,确保信息高效交换,支持多种角色如胆小鬼、占卜师等,每个角色拥有特定的技能和行为模式,增强游戏的策略深度和互动性。游戏界面简洁,操作流畅,适合喜欢心理战和策略游戏的玩家。文章末尾有源码和体验地址。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
面向多模态感知与反思的智能体架构Agentic AI的实践路径与挑战
Agentic AI(能动智能体)代表人工智能从被动响应向主动规划、自主决策的范式转变。本文系统解析其核心架构,涵盖感知、记忆、意图识别、决策与执行五大模块,并探讨多智能体协作机制与通信协议设计。结合代码示例,展示意图识别、任务规划与异步执行的实现方式,分析该架构的优势与挑战,如高自主性与通信复杂性等问题。最后展望未来方向,包括引入RAG、LoRA与多模态感知等技术,推动Agentic AI在自动编程、机器人协作等场景的广泛应用。