决策智能

首页 标签 决策智能
# 决策智能 #
关注
2431内容
2025年大模型就业:核心技术趋势、技能要求与职业发展全景解析
随着大语言模型(Large Language Models, LLMs)的技术飞速迭代,人工智能领域正经历从通用对话工具向高度智能化、任务导向的智能体(Agent)系统的深刻转型。到2025年4月,企业对掌握LLM相关技术的专业人才需求持续高涨,核心能力聚焦于检索增强生成(RAG)、智能体任务自动化、模型对齐优化以及多模态融合。本文将全面剖析2025年大模型就业市场的技术演进路径、核心技能要求、行业应用场景、推荐实践项目以及职业发展建议,旨在为从业者提供详尽的职业规划指南,帮助其精准把握行业机遇。
深度解析Agent实现,定制自己的Manus
文章结合了理论分析与实践案例,旨在帮助读者系统地认识AI Agent的核心要素、设计模式以及未来发展方向。
阿里云智能达摩院AI产品矩阵
“人工智能”已经成为了大家耳熟能详的词汇。如今,AI不再只是“能够在围棋比赛中战胜世界冠军”的技术了,人们对于它有了更多的期许。而在AI技术原子能力和产业落地产生的商业价值之间存在着必然的鸿沟,如何弥补这一鸿沟,为AI技术的终端用户产生真正的价值?本文中,达摩院机器智能实验室资深算法专家高杰将为大家分享他的观点。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
|
2月前
| |
LangGraph实战:从零构建智能交易机器人,让多个AI智能体像投资团队一样协作
如今的量化交易已远超传统技术指标,迈向多智能体协作的新时代。本文介绍了一个基于 **LangGraph** 构建的多智能体交易系统,模拟真实投资机构的运作流程:数据分析师收集市场情报,研究员展开多空辩论,交易员制定策略,风险团队多角度评估,最终由投资组合经理做出决策。系统具备记忆学习能力,通过每次交易积累经验,持续优化决策质量。
Multi-Agent实践第4期:智能体的“想”与“做”-ReAct Agent
本期文章,我们将向大家展示如何使用AgentScope内置的ReAct智能体解决更为复杂的问题。
基于蚁群算法的旅行商问题(TSP)求解
 蚁群算法(ant colony algorithm,ACA)是由意大利学者M.Dorigo等人于20世纪90年代初提出的一种新的模拟进化算法,其真实地模拟了自然界蚂蚁群体的觅食行为。M.Dorigo等人将其用于解决旅行商问题(traveling salesman problem,TSP),并取得了较好的实验结果。
免费试用