同构图、异构图、属性图、非显式图
同构图(Homogeneous Graph)、异构图(Heterogeneous Graph)、属性图(Property Graph)和非显式图(Graph Constructed from Non-relational Data)。
(1)同构图:
SEARCH-R1: 基于强化学习的大型语言模型多轮搜索与推理框架
SEARCH-R1是一种创新的强化学习框架,使大型语言模型(LLM)具备多轮搜索与推理能力。它通过强化学习自主生成查询并优化基于检索结果的推理,无需人工标注数据。相比传统RAG或工具使用方法,SEARCH-R1显著提升问答性能,在多个数据集上实现26%以上的相对性能提升。其核心优势在于强化学习与搜索的深度融合、交错式多轮推理机制及令牌级损失屏蔽技术,推动了LLM在复杂推理和实时知识获取方面的边界。尽管存在奖励函数设计简化等局限性,SEARCH-R1为构建更智能的交互系统提供了重要参考。
【密码学】非对称加密算法 - ECDH
由于 ECC 密钥具有很短的长度,所以运算速度比较快。到目前为止,对于 ECC 进行逆操作还是很难的,数学上证明不可破解,ECC 算法的优势就是性能和安全性高。实际应用可以结合其他的公开密钥算法形成更快、更安全的公开密钥算法,比如结合 DH 密钥形成 ECDH 密钥协商算法,结合数字签名 DSA 算法组成 ECDSA 数字签名算法。ECDH算法常常用来进行密钥的协商,协商好密钥后,用来解决上面的密钥分配问题,将对称加密的密钥安全的传到对端设备。算法加密/解密数字签名密钥交换RSA✅✅✅❌。
GraphRAG 与 RAG 的比较分析
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
Neo4j从入门到精通:打造高效知识图谱数据库 | AI应用开发
在大数据和人工智能时代,知识图谱作为一种高效的数据表示和查询方式,逐渐受到广泛关注。本文从入门到精通,详细介绍知识图谱及其存储工具Neo4j,涵盖知识图谱的介绍、Neo4j的特点、安装步骤、使用方法(创建、查询)及Cypher查询语言的详细讲解。通过本文,读者将全面了解如何利用Neo4j处理复杂关系数据。【10月更文挑战第14天】
通义智文:文档应用赋能千行百业
通义智文是阿里巴巴推出的大规模文档处理技术体系,旨在提升生产力效率。最初作为阅读工具发布,现已发展为涵盖文档解析、理解、生成等多方面的技术平台。通义智文支持超长文档处理、多模态文本解析,并在法律、教育等领域提供专业服务。其创新算法如VGT版面分析和Layout-LM多模态模型,显著提升了文档处理精度。应用场景包括PPT创作、故事绘本生成及法律文书审查等,赋能千行百业。