数据挖掘

首页 标签 数据挖掘
# 数据挖掘 #
关注
26953内容
强化学习在电商环境下的若干应用与研究
本文描述了淘宝搜索算法AI技术团使用强化学习算法在淘宝的环境中怎么解决实际的业务问题的以及一些研究探索。
机器学习-异常检测算法(二):Local Outlier Factor
Local Outlier Factor(LOF)是基于密度的经典算法(Breuning et.al. 2000), 文章发表于 SIGMOD 2000, 到目前已经有 3000+ 的引用。在 LOF 之前的异常检测算法大多是基于统计方法的,或者是借用了一些聚类算法用于异常点的识别(比如 ,DBSCAN,OPTICS)。
| |
来自: 云存储
Logtail技术分享(一) : Polling + Inotify 组合下的日志保序采集方案
logtail是阿里云一款进行日志实时采集的Agent,当前几十万台部署logtail的设备运行在各种不同环境上(集团、蚂蚁、阿里云,还有用户部署在公网、IOT设备),每天采集数PB的数据,支撑上千种应用的日志采集。
一文带你入门图论和网络分析
本文从图的概念以及历史讲起,并介绍了一些必备的术语,随后引入了networkx库,并以一个航班信息数据集为例,带领读者完成了一些基本分析。
EMR Spark Relational Cache的执行计划重写
作者:王道远,花名健身, 阿里巴巴计算平台EMR技术专家。 背景 EMR Spark提供的Relational Cache功能,可以通过对数据模型进行预计算和高效地存储,加速Spark SQL,为客户实现利用Spark SQL对海量数据进行即时查询的目的。
PostgreSQL 模糊查询最佳实践 - (含单字、双字、多字模糊查询方法)
PostgreSQL 模糊查询最佳实践 - (含单字、双字、多字模糊查询方法)https://github.com/digoal/blog/blob/master/201704/20170426_01.md
机器学习算法—KMEANS算法原理及阿里云PAI平台算法模块参数说明
阿里云PAI平台提供了大量已经封装完成可以直接使用的机器学习算法模块,本文说明KMEANS算法的原理并在原理的基础上说明PAI平台KMEANS模块中参数设置的意义,根据原理介绍算法的优点和缺点
创业公司如何做数据分析(一)开篇
本文将按照“WHY->WHAT->HOW”的思考方式来阐述下面三个问题:创业公司为什么需要做数据分析?创业公司做数据分析,需要做哪些事情?如何实现这些数据上的需求?从而基于“数据驱动”来做决策、运营与产品。
免费试用