机器学习笔记之K-means聚类
K-means聚类是聚类分析中比较基础的算法,属于典型的非监督学习算法。其定义为对未知标记的数据集,按照数据内部存在的数据特征将数据集划分为多个不同的类别,使类别内的数据尽可能接近,类别间的数据相似度比较大。用于衡量距离的方法主要有曼哈顿距离、欧氏距离、切比雪夫距离,其中欧氏距离较为常用。
七周成为数据分析师—Excel实战篇
本文是《七周成为数据分析师》的第三篇教程,如果想要了解写作初衷,可以先行阅读七周指南。温馨提示:如果您已经熟悉Excel,大可不必再看这篇文章,或只挑选部分。
在Excel技巧和Excel函数后,今天这篇文章讲解实战,如何运用上两篇文章的知识进行分析。