机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
70730内容
INTERSPEECH 2017系列 | 语音唤醒技术
目前市场上推出了各式各样的音箱,机器人,车载等语音交互产品,语音识别是交互的入口,而语音唤醒成为了踏进这一入口的第一步,如何高效、准确地对用户指令给出反应成为这一技术的最重要目标。本主题将介绍语音唤醒技术的基础知识,基本技术架构以及INTERSPEECH2017上的最新研究成果。
阿里云RPA(机器人流程自动化)干货系列之二:认识RPA(下)
导读:本文是阿里云RPA(机器人流程自动化)干货系列之二,主要介绍了RPA的发展齐纳经和主要使用场景有哪些,目前国内外主流的RPA厂商以及RPA的未来在哪。 一、RPA的发展前景 根据Gartner的最新研究,2018年全球机器人流程自动化(RPA)软件的开支预计将达到6.8亿美元,同比增长57%,到2022年支出达到24亿美元。
清华大学刘知远:在深度学习时代用HowNet搞事情
2017 年 12 月底,清华大学张钹院士做了一场题为《AI 科学突破的前夜,教授们应当看到什么?》的精彩特邀报告。他认为,处理知识是人类所擅长的,而处理数据是计算机所擅长的,如果能够将二者结合起来,一定能够构建出比人类更加智能的系统。
邓侃解读:深度学习病历分析前沿进展
邓侃博士又一力作,看深度学习如何让电子病历分析取得突破:Word2Vec、AutoEncoder让文字转换为张量,有助于更精准的预测;医学知识图谱,让我们能够清晰、量化地定义疾病表型;将图像也编码成张量,构建统一的患者画像,完整表达病情描述,实现临床导航和发病预测……曾经是冷门中的冷门,正在迎来一个又一个的进展。
阿里初敏博士:解读智能语音如何在客服智能化上落地?
你是否对2016年云栖大会现场直播的实时字幕好奇?是否想了解语言方面的智能化怎样与客服相结合,怎样在客服智能化上落地?其实,收集数据是我们面临的最大挑战,这是时间、人力成本等的核算的问题。技术上,任何一个语言,包括英语、汉语、方言等等,难度差别并不多,识别相对简单,难点在数据。
| |
来自: 云原生
阿里云Kubernetes 1.9上利用Helm玩转TensorFlow模型预测
TensorFlow Serving是Google开源的机器学习模型预测系统,能够简化并加速从模型到生产应用的过程。 它实际上也是一个在线服务,我们需要考虑它的部署时刻的安装配置,运行时刻的负载均衡,弹性伸缩,高可用性以及滚动升级等问题,幸运的是这正是Kubernetes擅长的地方。
免费试用