视觉智能开放平台

首页 标签 视觉智能开放平台
极致的显存管理!6G显存运行混元Video模型
混元 Video 模型自发布以来,已成为目前效果最好的开源文生视频模型,然而,这个模型极为高昂的硬件需求让大多数玩家望而却步。魔搭社区的开源项目 DiffSynth-Studio 近期为混元 Video 模型提供了更高效的显存管理的支持,目前已支持使用24G显存进行无任何质量损失的视频生成,并在极致情况下,用低至 6G 的显存运行混元 Video 模型!
VE-Bench:北京大学开源首个针对视频编辑质量的评估指标,从多角度考虑审美并准确地评估视频编辑效果
北京大学开源了首个针对视频编辑质量评估的新指标 VE-Bench,旨在通过人类感知一致的度量标准,更准确地评估视频编辑效果。
Enhance-A-Video:上海 AI Lab 推出视频生成质量增强算法,显著提升 AI 视频生成的真实度和细节表现
Enhance-A-Video 是由上海人工智能实验室、新加坡国立大学和德克萨斯大学奥斯汀分校联合推出的视频生成质量增强算法,能够显著提升视频的对比度、清晰度和细节真实性。
DynamicControl:腾讯推出动态地条件控制图像生成框架,结合了多模态大语言模型的推理能力和文生图模型的生成能力
DynamicControl 是腾讯优图联合南洋理工等机构推出的动态条件控制图像生成新框架,通过自适应选择不同条件,显著增强了图像生成的可控性。
video-analyzer:开源视频分析工具,支持提取视频关键帧、音频转录,自动生成视频详细描述
video-analyzer 是一款开源视频分析工具,结合 Llama 的 11B 视觉模型和 OpenAI 的 Whisper 模型,能够提取视频关键帧、转录音频并生成详细描述,支持本地运行和多种应用场景
DiTCtrl:腾讯推出多提示视频生成方法,通过多个提示生成连贯的视频内容,确保内容与提示一致
DiTCtrl 是一种基于多模态扩散变换器(MM-DiT)架构的多提示视频生成方法,能够在无需额外训练的情况下,实现多个文本提示之间的连贯视频生成,并保持内容和运动的一致性。
|
9月前
| |
来自: 视觉智能
阿里云多模态数据信息提取解决方案评测报告
本文基于阿里云多模态数据信息提取解决方案,对其进行全面评测。该方案利用百炼大模型等技术,支持文本、图像、音频和视频处理,显著提升效率并降低成本。体验中,文本和图片信息提取功能表现出色,部署便捷且准确率高。优势包括易用性、多模态支持和高性价比,但文档完善性和模型定制性等方面仍有提升空间。建议增强模型可定制性、跨模态融合能力及丰富文档案例,以进一步优化用户体验。
TRELLIS:微软联合清华和中科大推出的高质量 3D 生成模型,支持局部控制和多种输出格式
TRELLIS 是由微软、清华大学和中国科学技术大学联合推出的高质量 3D 生成模型,能够根据文本或图像提示生成多样化的 3D 资产,支持多种输出格式和灵活编辑。
免费试用