让小程序开口说话:DeepSeek语音交互开发指南
本文介绍如何利用DeepSeek语音交互技术构建智能语音助手,涵盖从安装声音采集设备、训练语言理解模型到设计语音控制界面的全过程。通过生活化场景,如深夜查找教程、旅行中寻找餐厅等,展示如何实现自然对话。此外,还深入探讨多轮对话记忆、情感计算及智能家居控制等进阶功能,帮助开发者创建会倾听、善思考的语音应用。最后,提供性能优化与安全防护建议,引领读者进入人机共生的新时代。
《攻克LSTM语音识别“语速关”:技术新突破与解决方案》
在语音识别中,LSTM虽具强大序列建模能力,但对不同语速的适应性仍面临挑战。为此,可从数据增强(如语速扰动、多语速语料库)、模型改进(引入注意力机制、双向LSTM、增加深度宽度)、训练策略(分层训练、多任务学习、调整参数)及后处理(语速归一化、语言模型融合)等方面入手,全面提升LSTM对不同语速的适应性和识别性能。
语音交互产品通过WebSocket协议对外提供实时语音流语音转写功能
阿里云智能语音交互产品通过WebSocket协议提供实时语音转写功能,支持长语音。音频流以Binary Frame上传,指令和事件为Text Frame。支持单声道、16 bit采样位数的PCM、WAV等格式,采样率8000Hz/16000Hz。可设置返回中间结果、添加标点、中文数字转阿拉伯数字,并支持多语言识别。服务端通过临时Token鉴权,提供外网和上海ECS内网访问URL。交互流程包括StartTranscription、StopTranscription指令及多种事件反馈。