基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
NLP助力非结构化文本抽取:实体关系提取实战
本文介绍了一套基于微博热帖的中文非结构化文本分析系统,通过爬虫代理采集数据,结合NLP技术实现实体识别、关系抽取及情感分析。核心技术包括爬虫模块、请求配置、页面采集和中文NLP处理,最终将数据结构化并保存为CSV文件或生成图谱。代码示例从基础正则规则到高级深度学习模型(如BERT-BiLSTM-CRF)逐步演进,适合初学者与进阶用户调试与扩展,展现了中文NLP在实际场景中的应用价值。