自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
8182内容
Transformer 学习笔记 | Seq2Seq,Encoder-Decoder,分词器tokenizer,attention,词嵌入
本文记录了学习Transformer过程中的笔记,介绍了Seq2Seq模型及其编码器-解码器结构。Seq2Seq模型通过将输入序列转化为上下文向量,再由解码器生成输出序列,适用于机器翻译、对话系统等任务。文章详细探讨了Seq2Seq的优势与局限,如信息压缩导致的细节丢失和短期记忆限制,并引入注意力机制来解决长序列处理问题。此外,还介绍了分词器(tokenizer)的工作原理及不同类型分词器的特点,以及词嵌入和Transformer架构的基础知识。文中包含大量图表和实例,帮助理解复杂的概念。参考资料来自多个权威来源,确保内容的准确性和全面性。
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
Repomix:8.1K Star!轻松将整个代码库打包为AI友好格式的开源工具,使代码库更易于AI理解
Repomix 是一款强大的工具,能够将整个代码库打包成AI友好的单个文件,支持多种输出格式和安全检查。
LIMO:上海交大推出高效推理方法,仅需817条训练样本就能激活大语言模型的复杂推理能力
LIMO 是由上海交通大学推出的一种高效推理方法,通过极少量的高质量训练样本激活大语言模型的复杂推理能力。
|
7月前
|
基于DeepSeek的具身智能高校实训解决方案——从DeepSeek+机器人到通用具身智能
本实训方案围绕「多模态输入 -> 感知与理解 -> 行动执行 -> 反馈学习」的闭环过程展开。通过多模态数据的融合(包括听觉、视觉、触觉等),并结合DeepSeek模型和深度学习算法,方案实现了对自然语言指令的理解、物体识别和抓取、路径规划以及任务执行的完整流程。
Open-Deep-Research:开源复现版 Deep Research,支持切换多种大模型,不再依赖 OpenAI o3
Open Deep Research 是一个开源的 AI 智能体,支持多种语言模型,具备实时数据提取、多源数据整合和AI推理功能。
大模型综述
本文是一篇关于大模型的综述文章,旨在帮助读者快速了解并深入研究大模型的核心概念和技术细节。
|
7月前
|
阿里云操作系统智能助手OS Copilot测评报告及建议
阿里云推出的OS Copilot是一款基于大模型构建的操作系统智能助手,旨在通过自然语言处理技术与操作系统经验的深度融合,为Linux用户提供前所未有的使用体验。它具备自然语言问答、辅助命令执行和系统运维调优等核心功能,极大降低了Linux的学习门槛,提升了工作效率。测试显示,OS Copilot在功能、性能、易用性和实用性方面表现出色,能够帮助用户高效解决问题并优化系统性能。未来,期待其持续优化升级,加入更多实用功能,进一步提升用户体验。
免费试用