实时数仓 Hologres

首页 标签 实时数仓 Hologres
|
10月前
|
Hologres OLAP场景核心能力介绍-2024实时数仓Hologres线上公开课02
本次分享由Hologres产品经理赵红梅(梅酱)介绍Hologres在OLAP场景中的核心能力。内容涵盖OLAP场景的痛点、Hologres的核心优势及其解决方法,包括实时数仓分析、湖仓一体加速、丰富的索引和查询性能优化等。此外,还介绍了Hologres在兼容PG生态、支持多种BI工具以及高级企业级功能如计算组隔离和serverless computing等方面的优势。最后通过小红书和乐元素两个典型客户案例,展示了Hologres在实际应用中的显著效益,如运维成本降低、查询性能提升及成本节省等。
|
10月前
|
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
|
10月前
|
云端问道5期方案教学-基于 Hologres 轻量实时的高性能OLAP分析
本文介绍了基于Hologres的轻量实时高性能OLAP分析方案,涵盖OLAP典型应用场景及Hologres的核心能力。Hologres是阿里云的一站式实时数仓,支持多种数据源同步、多场景查询和丰富的生态工具。它解决了复杂OLAP场景中的技术栈复杂、需求响应慢、开发运维成本高、时效性差、生态兼容弱、业务间相互影响等难题。通过与ClickHouse对比,Hologres在性能、写入更新、主键支持等方面表现更优。文中还展示了小红书、乐元素等客户案例,验证了Hologres在实际应用中的优势,如免运维、查询快、成本节约等。
Hologres 查询队列全面解析
Hologres V3.0引入查询队列功能,实现请求有序处理、负载均衡和资源管理,特别适用于高并发场景。该功能通过智能分类和调度,确保复杂查询不会垄断资源,保障系统稳定性和响应效率。在电商等实时业务中,查询队列优化了数据写入和查询处理,支持高效批量任务,并具备自动流控、隔离与熔断机制,确保核心业务不受干扰,提升整体性能。
深入解析 Hologres Table Group 与 Shard Count
Hologres 是一款强大的实时数仓,支持海量数据的高效存储与快速查询。Table Group 和 Shard Count 是其核心概念,前者管理数据分片,后者指定分片数量。合理配置二者可显著提升性能。Table Group 实现资源共享与协同管理,Shard Count 根据数据量和读写模式优化分片,确保高效处理。结合业务需求进行动态调整,可充分发挥 Hologres 的潜力,助力企业数字化转型。
|
10月前
|
云端问道5期实践教学-基于Hologres轻量实时的高性能OLAP分析
本文基于Hologres轻量实时的高性能OLAP分析实践,通过云起实验室进行实操。实验步骤包括创建VPC和交换机、开通Hologres实例、配置DataWorks、创建网关、设置数据源、创建实时同步任务等。最终实现MySQL数据实时同步到Hologres,并进行高效查询分析。实验手册详细指导每一步操作,确保顺利完成。
Hologres+Paimon构建一体化实时湖仓
Hologres 3.0全新升级,面向未来的一体化实时湖仓。它支持多种Table Format,提供湖仓存储、多模式计算、分析服务和Data+AI一体的能力。Hologres与Paimon结合,实现统一元数据管理、极速查询性能、增量消费及ETL功能。Dynamic Table支持流式、增量和全量三种刷新模式,满足不同业务需求,实现一份数据、一份SQL、一份计算的多模式刷新。该架构适用于高时效性要求的场景,也可用于成本敏感的数据共享场景。
MaxCompute近实时数仓能力升级
本文介绍了阿里云自研的离线实时一体化数仓,重点涵盖MaxCompute和Hologres两大产品。首先阐述了两者在ETL处理、AP分析及Serverless场景中的核心定位与互补关系。接着详细描述了MaxCompute在近实时能力上的升级,包括Delta Table形态、增量计算与查询支持、MCQ 2.0的优化等关键技术,并展示了其性能提升的效果。最后展望了未来在秒级数据导入、多引擎融合及更高效资源利用方面的改进方向。
湖仓融合:MaxComputee与Hologres基于OpenLake的湖上解决方案
本次主题探讨湖仓融合:MaxCompute与Hologres基于OpenLake的湖上解决方案。首先从数据湖和数据仓库的历史及业界解决方案出发,分析湖仓融合的两种思路;接着针对国内问题,介绍阿里云如何通过MaxCompute和Hologres解决湖仓融合中的挑战,特别是在非结构化数据处理方面的能力。最后,重点讲解Object Table为湖仓增添了SQL生态的非结构化数据处理能力,提升数据处理效率和安全性,使用户能够在云端灵活处理各类数据。
免费试用