GPU云服务器

首页 标签 GPU云服务器
# GPU云服务器 #
关注
7882内容
大模型训练稳定性思考和实践
本次分享由阿里云智能集团高级技术专家张彭城主讲,聚焦大模型训练的稳定性问题。主要内容分为三部分:1) 大模型训练稳定性的关键挑战,包括大规模同步任务中的故障率高和恢复成本大;2) 阿里云大模型训练稳定性系统的介绍,涵盖健康检测、实时可观测系统及自愈系统;3) 实践分享,探讨集群网络故障定位与修复、性能优化等实际问题的解决方案。通过这些措施,确保大模型训练的高效与稳定。
并行文件存储在大模型训练中的探索与实践
阿里云智能集团存储产品专家何邦剑分享了并行文件存储CPFS在大模型训练中的应用。CPFS针对大模型训练的IO特点,优化性能、降低成本、提升用户体验。它支持多计算平台共享访问,具备数据分层存储、生命周期管理、缓存加速等特性,实现高效的数据处理与管理,显著提升训练效率和资源利用率。尤其在大规模集群中,CPFS提供了高吞吐、低延迟及灵活扩展的能力,助力客户如零一万物实现高性能训练。
|
7天前
| |
来自: 云原生
云数据库Tair:从稳定低延时缓存到 Serverless KV
本次分享聚焦云数据库Tair的使用,涵盖三部分内容:1) Tair概览,介绍其作为稳定低延时缓存及KV数据库服务的特点和优势;2) 稳定低延迟缓存技术,探讨如何通过多线程处理、优化内核等手段提升性能与稳定性;3) 从缓存到Serverless KV的演进,特别是在AI大模型时代,Tair如何助力在线服务和推理缓存加速。Tair在兼容性、性能优化、扩缩容及AI推理加速方面表现出色,满足不同场景需求。
MNN推理框架将大模型放进移动端设备,并达到SOTA推理性能!
随着移动端(手机/平板等)算力、内存、磁盘空间的不断增长,在移动端部署大模型逐渐成为可能。在端侧运行大模型,可以有一系列好处:去除网络延迟,加快响应速度;降低算力成本,便于大规模应用;不需数据上传,保护用户稳私。
CLEAR:新加坡国立大学推出线性注意力机制,使8K图像的生成速度提升6.3倍,显著减少了计算量和时间延迟
新加坡国立大学推出的CLEAR线性注意力机制,通过局部注意力窗口设计,显著提升了预训练扩散变换器生成高分辨率图像的效率,生成8K图像时提速6.3倍。
|
9天前
|
面试必问的多线程优化技巧与实战
多线程编程是现代软件开发中不可或缺的一部分,特别是在处理高并发场景和优化程序性能时。作为Java开发者,掌握多线程优化技巧不仅能够提升程序的执行效率,还能在面试中脱颖而出。本文将从多线程基础、线程与进程的区别、多线程的优势出发,深入探讨如何避免死锁与竞态条件、线程间的通信机制、线程池的使用优势、线程优化算法与数据结构的选择,以及硬件加速技术。通过多个Java示例,我们将揭示这些技术的底层原理与实现方法。
|
9天前
| |
来自: 弹性计算
利用阿里云GPU加速服务器实现pdf转换为markdown格式
随着AI模型的发展,GPU需求日益增长,尤其是个人学习和研究。直接购置硬件成本高且更新快,建议选择阿里云等提供的GPU加速型服务器。
|
13天前
|
尽享红利,Serverless构建企业AI应用方案与实践
本次课程由阿里云云原生架构师计缘分享,主题为“尽享红利,Serverless构建企业AI应用方案与实践”。课程分为四个部分:1) Serverless技术价值,介绍其发展趋势及优势;2) Serverless函数计算与AI的结合,探讨两者融合的应用场景;3) Serverless函数计算AIGC应用方案,展示具体的技术实现和客户案例;4) 业务初期如何降低使用门槛,提供新用户权益和免费资源。通过这些内容,帮助企业和开发者快速构建高效、低成本的AI应用。
免费试用