GPU云服务器

首页 标签 GPU云服务器
# GPU云服务器 #
关注
7882内容
推理降本与提升资源效率的实践
本课程从业务角度探讨大模型推理部署及资源利用率提升。首先分析大模型与GPU发展趋势,包括模型开源、规模增长及多模态能力增强;其次介绍高效部署大模型推理业务的步骤,涵盖业务场景选择、架构优化及显存规划;接着讲解如何通过DeepCPU-LLM框架和DeepNCCL通讯库优化推理效率;最后探讨通过KuberGPU实现细粒度GPU资源管理,提升整体资源利用率,降低推理成本。
灵骏智算实例异常预测技术
本文介绍了灵骏智算实例异常预测技术,旨在提前预测GPU等设备的故障,确保大模型训练的稳定性。文章首先探讨了为何需要进行异常预测,指出大规模GPU集群在大模型训练中面临的稳定性挑战。接着阐述了预测的可行性和原理,通过分析复杂系统中的小异常逐步积累导致故障的现象,利用时序指标和关键指标分布模式进行预测。目前该技术可在1-250分钟内提前预测故障,准确率达95%以上,召回率超过20%。最后介绍了系统的集成与应用,强调了端侧部署预测模型的优势,包括降低网络开销、保护用户数据隐私等。
|
3天前
| |
来自: 弹性计算
阿里云GPU云服务器怎么样?产品优势、应用场景介绍与最新活动价格参考
阿里云GPU云服务器怎么样?阿里云GPU结合了GPU计算力与CPU计算力,主要应用于于深度学习、科学计算、图形可视化、视频处理多种应用场景,本文为您详细介绍阿里云GPU云服务器产品优势、应用场景以及最新活动价格。
Qwen for Tugraph:自然语言至图查询语言翻译大模型微调最佳实践
在图数据库的应用场景中,自然语言至图查询语言的高效转换一直是行业中的重要挑战。本次实践基于阿里云 Qwen 大模型,围绕 TuGraph 图数据库的需求,探索并验证了一套高效的大模型微调方案,显著提升了模型生成 Cypher 查询语句的能力。通过数据清洗、两阶段微调方法以及两模型推理框架等一系列创新策略,我们成功解决了图查询语言翻译任务中的核心问题。本文将从背景与目标、数据准备与清洗、微调框架设计、Prompt设计与优化、模型推理、最佳实践效果以及前景展望等六个部分出发,向读者逐步介绍我们的方案。
深度揭秘复杂异构硬件推理优化
本文介绍了大语言模型在部署推理层面的性能优化工作,涵盖高性能算子、量化压缩、高效运行时及分布式调度四个方面。面对参数和上下文规模增长带来的显存、缓存与计算开销挑战,文中详细探讨了如何通过优化算子性能、低精度量化压缩、异步运行时框架设计以及多层次分布式架构来提升大模型推理效率。此外,还展示了BladeLLM引擎框架的实际应用效果,证明了这些技术在高并发场景下的显著性能提升。
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
GPU安全容器面临的问题和挑战
本次分享由阿里云智能集团弹性计算高级技术专家李亮主讲,聚焦GPU安全容器面临的问题与挑战。内容分为五个部分:首先介绍GPU安全容器的背景及其优势;其次从安全、成本和性能三个维度探讨实践中遇到的问题及应对方案;最后分享GPU安全容器带状态迁移的技术路径与应用场景。在安全方面,重点解决GPU MMIO攻击问题;在成本上,优化虚拟化引入的内存开销;在性能上,提升P2P通信和GPU Direct的效率。带状态迁移则探讨了CRIU、Hibernate及VM迁移等技术的应用前景。
分布式大模型训练的性能建模与调优
阿里云智能集团弹性计算高级技术专家林立翔分享了分布式大模型训练的性能建模与调优。内容涵盖四大方面:1) 大模型对AI基础设施的性能挑战,强调规模增大带来的显存和算力需求;2) 大模型训练的性能分析和建模,介绍TOP-DOWN和bottom-up方法论及工具;3) 基于建模分析的性能优化,通过案例展示显存预估和流水线失衡优化;4) 宣传阿里云AI基础设施,提供高效算力集群、网络及软件支持,助力大模型训练与推理。
深度揭秘超长序列生成任务训练技术
阿里自研的TorchAcc训练引擎提出了超长序列训练方案FlashSequence,针对超长文本理解、视频生成等场景。通过2D Context Parallel和Hybrid FSDP混合分布式策略,结合显存、计算和通信优化,实现了百万级别超长序列模型的高效训练。FlashSequence在算力、显存需求及分布式训练方面进行了多项创新,性能提升显著,最大可达48%。该方案大幅降低了企业创新成本,提升了业务应用的可能性。
云上AI Infra解锁大模型创新应用
本节课程由阿里云智能集团资深技术专家王超分享,主题为AI基础设施的发展趋势。课程聚焦于AI Infra设计与Scaling Law,探讨了下一代AI基础设施的设计目标、功能升级及推理场景中的应用。主要内容包括高效支持大规模模型训练和推理、全球调度系统的设计、Rack level的Scale优化以及多租户容器化使用方式。通过这些改进,旨在提升并行效率、资源利用率及稳定性,推动AI基础设施迈向更高性能和更优调度的新阶段。
免费试用