RocketMQ实战—6.生产优化及运维方案
本文围绕RocketMQ集群的使用与优化,详细探讨了六个关键问题。首先,介绍了如何通过ACL配置实现RocketMQ集群的权限控制,防止不同团队间误用Topic。其次,讲解了消息轨迹功能的开启与追踪流程,帮助定位和排查问题。接着,分析了百万消息积压的处理方法,包括直接丢弃、扩容消费者或通过新Topic间接扩容等策略。此外,提出了针对RocketMQ集群崩溃的金融级高可用方案,确保消息不丢失。同时,讨论了为RocketMQ增加限流功能的重要性及实现方式,以提升系统稳定性。最后,分享了从Kafka迁移到RocketMQ的双写双读方案,确保数据一致性与平稳过渡。
智能运维:云原生大规模集群GitOps实践
智能运维:云原生大规模集群GitOps实践,由阿里云运维专家钟炯恩分享。内容涵盖云原生运维挑战、管理实践、GitOps实践及智能运维体系。通过OAM模型和GitOps优化方案,解决大规模集群的发布效率与稳定性问题,推动智能运维工程演进。适用于云原生环境下的高效运维管理。
服务器高效运维管理方案
智能运维作为保障业务连续性和提升系统性能的关键环节,其重要性日益凸显。服务器作为承载各类应用与数据的核心基础设施,其稳定性、安全性和性能直接关系到企业的业务运行效率和用户体验
如何帮助我们改造升级原有架构——基于TDengine 平台
一、简介
TDengine 核心是一款高性能、集群开源、云原生的时序数据库(Time Series Database,TSDB),专为物联网IoT平台、工业互联网、电力、IT 运维等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个高性能、分布式的物联网IoT、工业大数据平台。
二、TDengine 功能与组件
TDengine 社区版是一开源版本,采用的是 AGPL 许可证,它具备高效处理时序数据所需要的所有功能,包括:
SQL 写入、无模式写入和通过第三方工具写入
S标准 SQL 查
运维服务体系架构
【2月更文挑战第28天】构建数据中心的IT运维服务体系,需整合资源,规范行为,确保服务质量。该体系基于ITIL和ITSS标准,全面覆盖IT服务生命周期和业务类型,统筹规划并保持科学权威。体系由制度、流程、组织、队伍、技术平台和运维对象六部分组成,制度规定流程,组织和人员遵循制度执行标准化运维。重点包括运维服务制度与流程的制定、专业团队的建设和统一的工作流程,以及运用技术平台进行规范化管理。