五、Executors工厂类详解
本文深入解析Java中Executors类提供的12种线程池创建方法,涵盖newFixedThreadPool、newCachedThreadPool、newWorkStealingPool及ScheduledExecutorService等,对比其核心参数、工作原理与适用场景,并结合源码分析任务调度机制、线程复用策略与队列行为,重点探讨周期任务调度延迟、死循环任务影响等实际问题,帮助开发者准确选择和使用线程池,提升并发编程能力。
如何对乘积量化进行倒排索引?
结合聚类、乘积量化与倒排索引,可高效实现近似最近邻检索。先用K-Means将样本分为1024类,以类中心为基准计算残差向量,并用乘积量化压缩存储。查询时,先定位最近聚类,查倒排表获取候选向量,再通过量化距离计算快速返回Top-K结果。该方法大幅减少搜索空间,在保证精度的同时提升速度,广泛应用于图像检索、推荐系统等领域,适用于各类高维向量的快速匹配。
如何查找对应的 SSTable 文件
通过分层架构管理SSTable,Level 0逐个查找,Level 1起每层范围不重叠,可二分定位目标文件。查询逐层下沉,直至找到元素或结束,显著提升检索效率。
如何使用聚类算法进行相似检索?
利用聚类算法构建倒排索引,可高效实现相似检索。先将数据划分为若干聚类(如1024个),以聚类ID为Key建立索引。查询时,定位最近聚类,通过索引获取候选集并计算距离,返回Top K结果。针对候选过多或过少,可采用层次聚类细化划分,或扩展至次近聚类补充检索,提升效率与准确性。
如何使用乘积量化压缩向量?
乘积量化通过将高维向量划分为多个低维子空间,对每个子空间聚类并用聚类ID表示子向量,大幅压缩存储空间。例如,1024维向量可分段聚类,用32比特替代原始4KB空间,压缩率达1/1024,显著提升内存加载与检索效率。
SimHash 是怎么构造的?
SimHash是Google提出的局部敏感哈希算法,通过普通哈希函数为关键词生成哈希值并保留权重信息。将关键词哈希值转为±1向量,乘以权重后按位相加,最终正负判断生成0/1指纹。该方法简化了高维空间划分,保留关键词重要性,使相似文档生成相近哈希值,广泛应用于去重与相似性检测。(238字)
聚类算法和局部敏感哈希的区别?
聚类算法与局部敏感哈希均用于高维数据相似检索。局部敏感哈希通过哈希函数降维,速度快但精度低,适合表面特征匹配;聚类算法(如K-Means)保留高维特征,按距离划分簇,类内紧凑、类间分离,更适用于语义相似性检索,精度更高,但计算开销较大。两者权衡在于速度与准确性的取舍。
非精准 Top K 检索如何实现?
非精准Top K检索通过离线计算静态质量得分(如PageRank)并预先排序,实现在线快速截断。倒排索引的posting list按质量分降序排列,多关键词查询时通过归并排序高效获取Top K结果,大幅降低在线计算开销,适用于对相关性要求不高的场景。
如何使用概率模型中的 BM25 算法进行打分?
BM25是一种基于概率模型的文本相关性打分算法,可视为TF-IDF的升级版。它综合考虑词频(TF)、逆文档频率(IDF)、文档长度及查询词频,并引入非线性增长与饱和机制。通过参数k1、k2和b调节词频权重、文档长度影响和查询词权重,使评分更精准。广泛应用于Elasticsearch、Lucene等搜索引擎中。