芯片

首页 标签 芯片
# 芯片 #
关注
13837内容
|
1天前
|
【AI系统】CPU 指令集架构
本文介绍了指令集架构(ISA)的基本概念,探讨了CISC与RISC两种主要的指令集架构设计思路,分析了它们的优缺点及应用场景。文章还简述了ISA的历史发展,包括x86、ARM、MIPS、Alpha和RISC-V等常见架构的特点。最后,文章讨论了CPU的并行处理架构,如SISD、SIMD、MISD、MIMD和SIMT,并概述了这些架构在服务器、PC及嵌入式领域的应用情况。
|
1天前
|
【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心组件,负责执行指令和数据计算,协调计算机各部件运作。自1946年ENIAC问世以来,CPU经历了从弱小到强大的发展历程。本文将介绍CPU的基本概念、发展历史及内部结构,探讨世界首个CPU的诞生、冯·诺依曼架构的影响,以及现代CPU的组成与工作原理。从4004到酷睿i系列,Intel与AMD的竞争推动了CPU技术的飞速进步。CPU由算术逻辑单元、存储单元和控制单元三大部分组成,各司其职,共同完成指令的取指、解码、执行和写回过程。
|
1天前
|
【AI系统】计算之比特位宽
本文详细介绍了计算机中整数和浮点数的比特位宽概念及其在AI模型中的应用。通过对比特位宽的定义、整数与浮点数的表示方法、AI中常用的数据类型(如FP32、TF32、FP16、BF16、FP8和Int8)及其在模型训练和推理中的作用进行了阐述。特别关注了FP8数据类型在提高计算性能和减少内存占用方面的新进展,以及降低比特位宽对AI芯片性能的影响,强调了低比特位宽在AI领域的重要性。
|
1天前
|
【AI系统】核心计算之矩阵乘
本文探讨了AI模型中矩阵乘运算的优化实现及其在AI芯片设计中的重要性。文章首先介绍了卷积操作如何转化为矩阵乘,接着阐述了矩阵乘的分块(Tiling)技术以适应芯片内存限制,最后总结了几种常见的矩阵乘优化方法,包括循环优化、分块矩阵乘法、SIMD指令优化等,旨在提高计算效率和性能。
|
1天前
|
【AI系统】关键设计指标
本文介绍了AI芯片设计中的关键指标与设计点,涵盖OPS、MACs、FLOPs等计算单位,以及精度、吞吐量、时延、能耗、成本和易用性等六大关键指标。文章还探讨了MACs和PE优化策略,以及通过算术强度和Roofline模型评估AI模型在特定芯片上的性能表现,为AI芯片的性能优化提供了理论依据和实践指导。
|
1天前
|
【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对芯片设计的重要性,重点介绍了轻量化网络模型和大模型分布式并行两大主题。轻量化模型旨在减少参数量和计算量,适合资源受限的设备;大模型分布式并行则针对高性能计算需求,通过数据并行、模型并行等技术提高训练效率。文中详细解析了轻量化设计的方法及分布式并行的实现机制,为AI芯片设计提供了理论依据和技术指导。
|
1天前
|
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
|
1天前
|
【AI系统】AI芯片驱动智能革命
本课程深入解析AI模型设计演进,探讨AI算法如何影响AI芯片设计,涵盖CPU、GPU、FPGA、ASIC等主流AI芯片,旨在全面理解AI系统体系,适应后摩尔定律时代的技术挑战。
免费试用