PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4933内容
鱼类AI数量检测代码分享
本代码基于深度学习实现鱼类数量检测,使用预训练的 Faster R-CNN 模型识别图像中的鱼类,并用边界框标注位置。支持单张图片检测、文件夹批量检测、结果可视化及统计分析。需安装 PyTorch、OpenCV 等依赖库。可微调模型提升鱼类检测精度。
利用OpenVINO™高效推理MiniCPM4系列模型
面壁智能正式发布端侧MiniCPM 4.0 模型,实现了端侧可落地的系统级软硬件稀疏化的高效创新。
|
5月前
| |
Arctic长序列训练技术:百万级Token序列的可扩展高效训练方法
Arctic长序列训练(Arctic Long Sequence Training, ALST)技术能够在4个H100节点上对Meta的Llama-8B模型进行高达1500万token序列的训练,使得长序列训练在标准GPU集群甚至单个GPU上都能实现快速、高效且易于部署的执行。
|
5月前
|
MindIE-LLM ATB模型推理全流程解析
最近,有很多小伙伴问我,如果他们想自己基于MindIE镜像中的文件适配新模型,可以怎么做? 为了实现这个目标,首先需要了解MindIE-LLM模型在推理过程中的代码调用流程,然后根据新模型的算法进行适配。
Post-Training on PAI (1):一文览尽开源强化学习框架在PAI平台的应用
Post-Training(即模型后训练)作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于 Pre-Training(即模型预训练),Post-Training 阶段对计算资源和数据资源需求更小,更易迭代,因此备受推崇。近期,我们将体系化地分享基于阿里云人工智能平台 PAI 在强化学习、模型蒸馏、数据预处理、SFT等方向的技术实践,旨在清晰地展现 PAI 在 Post-Training 各个环节的产品能力和使用方法,欢迎大家随时交流探讨。
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
基于YOLOv8的学生课堂行为识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,可实时识别学生课堂行为(如举手、看书、写作业等),支持图片、视频、摄像头输入。含完整源码、数据集、预训练模型及部署教程,适用于智慧教室场景,助力教学分析智能化转型。
|
5月前
|
nanoVLM: 简洁、轻量的纯 PyTorch 视觉-语言模型训练代码库
nanoVLM 是一个基于 PyTorch 的轻量级工具包,专为训练视觉语言模型(VLM)设计。它结构简洁、易于理解,适合初学者快速上手。支持在免费 Colab Notebook 上训练,结合视觉 Transformer 与语言模型,实现图像理解和文本生成。项目受 nanoGPT 启发,注重代码可读性与实现效率。
离线推理精度问题分析
传统模型迁移到昇腾设备上出现了精度问题,介绍精度问题的定位方法和解决方案,重点介绍了精度问题的定位定界方法。
免费试用