基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】
再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
DGL(0.8.x) 技术点分析
DGL是由Amazon发布的图神经网络开源库,支持TensorFlow、PyTorch和MXNet。DGL采用消息传递范式进行图计算,包括边上计算、消息函数、点上计算、聚合与更新函数等。其架构分为顶层业务抽象、Backend多后端适配、Platform高效计算适配以及C++性能敏感功能层,确保高效、灵活的图神经网络开发。