canal

首页 标签 canal
# canal #
关注
2028内容
|
2月前
|
Redis篇
本内容整理了Redis缓存常见问题及解决方案,涵盖缓存穿透、击穿、雪崩的原理与应对策略,布隆过滤器的使用,缓存与数据库双写一致性方案(如读写锁、Canal组件),Redis持久化机制(RDB与AOF对比),数据过期与淘汰策略,分布式锁实现(如Redisson),主从同步、集群方案及高并发高可用保障措施,深入解析Redis性能优化与实际应用技巧,适合用于面试准备或技术提升。
2025年5大国产ETL工具横向评测
在企业数据管理中,ETL工具成为整合分散数据的关键。本文介绍了五款主流国产ETL工具:FineDataLink(低代码、功能全面)、Kettle(开源易用)、DataX(高速同步)、Canal(MySQL实时增量处理)和StreamSets(可视化强),帮助用户根据需求选择最合适的工具,提升数据效率与业务价值。
|
2月前
|
如何解决并发环境下双写不一致的问题?
在并发环境下,“双写不一致”指数据库与缓存因操作顺序或执行时机差异导致数据不匹配。解决核心是保证操作的原子性、顺序性或最终一致性。常见方案包括延迟双删、加锁机制、binlog同步、版本号机制和读写锁分离,分别适用于不同一致性要求和并发场景,需根据业务需求综合选择。
zk基础—5.Curator的使用与剖析
本文主要介绍了基于Curator进行基本的zk数据操作、基于Curator实现集群元数据管理、基于Curator实现HA主备自动切换、基于Curator实现Leader选举、基于Curator实现分布式Barrier、基于Curator实现分布式计数器、基于Curator实现zk的节点和子节点监听机制、基于Curator创建客户端实例的源码分析、Curator在启动时是如何跟zk建立连接的、基于Curator进行增删改查节点的源码分析、基于Curator的节点监听回调机制的实现源码、基于Curator的Leader选举机制的实现源码。
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
MySQL 自动同步开源工具
本文介绍了几种开源工具用于实现 MySQL 数据库的自动同步。
|
4月前
| |
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
免费试用