数据库管理

首页 标签 数据库管理
# 数据库管理 #
关注
16422内容
|
14天前
| |
来自: 数据库
拥抱Data+AI|如何破解电商7大挑战?DMS+AnalyticDB助力企业智能决策
本文为阿里云瑶池数据库「拥抱Data+AI」系列连载第1篇,聚焦电商行业痛点,探讨如何利用数据与AI技术及分析方法论,为电商注入新活力与效能。文中详细介绍了阿里云Data+AI解决方案,涵盖Zero-ETL、实时在线分析、混合负载资源隔离、长周期数据归档等关键技术,帮助企业应对数据在线重刷、实时分析、成本优化等挑战,实现智能化转型。
|
14天前
|
数据库死锁的解决方案有哪些?
【10月更文挑战第28天】数据库死锁是数据库管理中的一个常见问题
|
15天前
| |
来自: 数据库
媒体声音|重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
在2024云栖大会上,阿里云瑶池数据库发布了首个一站式多模数据管理平台DMS:OneMeta+OneOps。该平台由Data+AI驱动,兼容40余种数据源,实现跨云数据库、数据仓库、数据湖的统一数据治理,帮助用户高效提取和分析元数据,提升业务决策效率10倍。DMS已服务超10万企业客户,降低数据管理成本高达90%。
|
16天前
|
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
|
16天前
|
ClickHouse入门指南:快速搭建与使用
【10月更文挑战第26天】在大数据时代,如何高效地处理海量数据成为了许多企业和开发者的关注点。ClickHouse 是一个开源的列式数据库管理系统(Column-Oriented DBMS),以其出色的查询性能和高并发能力,在数据分析领域迅速崛起。本文将从一个初学者的角度出发,详细介绍如何快速上手 ClickHouse,涵盖从环境搭建到基础操作的全过程。
|
17天前
|
AnalyticDB核心概念详解:表、索引与分区
【10月更文挑战第25天】在大数据时代,高效的数据库管理和分析工具变得尤为重要。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,能够支持PB级数据的实时查询和分析。作为一名数据工程师,我有幸在多个项目中使用过AnalyticDB,并积累了丰富的实践经验。本文将从我个人的角度出发,详细介绍AnalyticDB的核心概念,包括表结构设计、索引类型选择和分区策略,帮助读者更有效地组织和管理数据。
|
18天前
|
oracle数据库技巧
【10月更文挑战第25天】oracle数据库技巧
|
18天前
|
数据库多实例的深入解析
【10月更文挑战第24天】数据库多实例是一种重要的数据库架构方式,它为数据库的高效运行和灵活管理提供了多种优势。在实际应用中,需要根据具体的业务需求和技术环境,合理选择和配置多实例,以充分发挥其优势,提高数据库系统的性能和可靠性。随着技术的不断发展和进步,数据库多实例技术也将不断完善和创新,为数据库管理带来更多的可能性和便利。
免费试用