时序数据库

首页 标签 时序数据库
# 时序数据库 #
关注
1128内容
InfluxDB的连续查询与数据聚合技术详解
【4月更文挑战第30天】InfluxDB的连续查询(CQ)功能用于自动定时聚合时间序列数据,适用于数据降采样、实时分析和告警通知等场景。CQ使用InfluxQL编写,例如,每1小时对`cpu_usage`测量值计算主机的平均CPU使用率并存入`cpu_usage_hourly`。InfluxDB提供多种聚合函数如`MEAN()`, `MAX()`, 支持滑动窗口聚合等复杂操作,助力时间序列数据分析和趋势预测。通过CQ,用户能高效管理和利用时间序列数据信息。
InfluxDB查询语言Flux详解
【4月更文挑战第30天】InfluxDB的查询语言Flux是种函数式、声明性的脚本语言,用于处理时序数据。它包含管道操作符(`|`)来串联函数,内置函数如`range`、`filter`和`mean`,以及变量和运算符支持。Flux适用于实时监控、趋势分析、数据可视化等场景,帮助用户实现灵活高效的查询操作。了解其基本概念和语法,能提升时序数据分析的效率。
InfluxDB性能优化:写入与查询调优
【4月更文挑战第30天】本文探讨了InfluxDB的性能优化,主要分为写入和查询调优。写入优化包括批量写入、调整写入缓冲区、数据压缩、shard配置优化和使用HTTP/2协议。查询优化涉及索引优化、查询语句调整、缓存管理、分区与分片策略及并发控制。根据实际需求应用这些策略,可有效提升InfluxDB的性能。
InfluxDB入门:基础概念解析
【4月更文挑战第30天】InfluxDB是开源时序数据库,擅长处理实时数据,常用于监控和分析。本文介绍了其基础概念:数据库(数据容器)、测量值(类似表)、字段(数据值)、标签(元数据)、时间戳和数据点。InfluxDB特性包括高性能写入、灵活查询(InfluxQL和Flux)、可扩展性及活跃社区支持。了解这些概念有助于更好地使用InfluxDB处理时间序列数据。
PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、...
TDengine x 阿里云计算巢:实现云上规模化、多渠道部署和管理
近年来,随着云技术的快速发展,企业上云成为一大趋势。中国信息通信研究院披露的数据显示,2021年中国云计算市场规模达到3102亿元,增速达48.4%,中国公有云市场将保持高速增长态势。不只是传统企业,在信息化时代,软件上云也有其必要性和重要性。
【SpringBoot系列】微服务监测(常用指标及自定义指标)
【4月更文挑战第6天】SpringBoot微服务的监测指标及自定义指标讲解
免费试用