OLAP

首页 标签 OLAP
# OLAP #
关注
4663内容
|
10月前
|
AnalyticDB 实时数仓架构解析
AnalyticDB 是阿里云自研的 OLAP 数据库,广泛应用于行为分析、数据报表、金融风控等应用场景,可支持 100 trillion 行记录、10PB 量级的数据规模,亚秒级完成交互式分析查询。本文是对 《 AnalyticDB: Real-time OLAP Database System at Alibaba Cloud 》的学习总结。
|
10月前
|
AnalyticDB安全与合规:数据保护与访问控制
【10月更文挑战第25天】在当今数据驱动的时代,数据的安全性和合规性成为了企业关注的重点。AnalyticDB(ADB)作为阿里云推出的一款高性能实时数据仓库服务,提供了丰富的安全特性来保护数据。作为一名长期使用AnalyticDB的数据工程师,我深知加强数据安全的重要性。本文将从我个人的角度出发,分享如何通过数据加密、访问控制和审计日志等手段加强AnalyticDB的安全性,确保数据的安全性和合规性。
|
10月前
|
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
|
10月前
|
优化AnalyticDB性能:查询优化与资源管理
【10月更文挑战第25天】在大数据时代,实时分析和处理海量数据的能力成为了企业竞争力的重要组成部分。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,支持PB级数据的秒级查询响应。作为一名已经有一定AnalyticDB使用经验的开发者,我发现通过合理的查询优化和资源管理可以显著提升ADB的性能。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者更好地利用ADB的强大功能。
|
10月前
|
构建高可用AnalyticDB集群:最佳实践
【10月更文挑战第25天】在大数据时代,数据仓库和分析平台的高可用性变得尤为重要。作为阿里巴巴推出的一款完全托管的PB级实时数据仓库服务,AnalyticDB(ADB)凭借其高性能、易扩展和高可用的特点,成为众多企业的首选。本文将从我个人的角度出发,分享如何构建和维护高可用性的AnalyticDB集群,确保系统在各种情况下都能稳定运行。
|
10月前
|
AnalyticDB核心概念详解:表、索引与分区
【10月更文挑战第25天】在大数据时代,高效的数据库管理和分析工具变得尤为重要。阿里云的AnalyticDB(ADB)是一款完全托管的实时数据仓库服务,能够支持PB级数据的实时查询和分析。作为一名数据工程师,我有幸在多个项目中使用过AnalyticDB,并积累了丰富的实践经验。本文将从我个人的角度出发,详细介绍AnalyticDB的核心概念,包括表结构设计、索引类型选择和分区策略,帮助读者更有效地组织和管理数据。
|
10月前
|
快速入门:搭建你的第一个AnalyticDB实例
【10月更文挑战第25天】在大数据时代,高效的在线分析处理(OLAP)成为企业决策的关键。AnalyticDB是阿里云推出的一款完全托管的实时数据仓库服务,它能够支持PB级的数据量和高并发的查询需求。作为一名数据工程师,我有幸在工作中使用了AnalyticDB,并积累了丰富的实践经验。本文将从个人角度出发,详细介绍如何快速搭建你的第一个AnalyticDB实例,包括创建实例、连接数据库、导入数据和执行简单查询等步骤。
|
10月前
|
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
|
10月前
| |
来自: 计算巢
我们需要怎样的 OLAP
OLAP(在线分析处理)最初指代人员对数据进行交互式分析操作,但如今其概念被BI软件狭义化为多维分析。真正的在线分析应包括业务人员基于经验做出猜测并验证,从历史数据中寻找规律。多维分析虽能提供有用信息,但难以完成复杂计算。SPL(结构化查询语言的一种变体)因其强大的数据处理能力和易管理性,成为业务人员和开发人员进行复杂数据分析的理想工具。
免费试用