Python 高级编程与实战:构建分布式系统
本文深入探讨了 Python 中的分布式系统,介绍了 ZeroMQ、Celery 和 Dask 等工具的使用方法,并通过实战项目帮助读者掌握这些技术。ZeroMQ 是高性能异步消息库,支持多种通信模式;Celery 是分布式任务队列,支持异步任务执行;Dask 是并行计算库,适用于大规模数据处理。文章结合具体代码示例,帮助读者理解如何使用这些工具构建分布式系统。
这可能是最轻量级的列存技术了
列式存储通过减少硬盘访问量和高效压缩,显著提升数据分析性能。然而,传统列存技术如Hadoop、MPP数据库等架构复杂、成本高。esProc的ctx文件提供了一种轻量级列存解决方案,支持高效的数据压缩、分段并行计算及简单易用的SPL编程语言。ctx文件适用于大数据量存储,读取性能优于ORC和Parquet,且无需复杂环境配置,适合嵌入Java应用,特别适用于报表缓存场景。SPL已开源免费,欢迎了解。
进行GPU算力管理
本篇主要简单介绍了在AI时代由‘大参数、大数据、大算力’需求下,对GPU算力管理和分配带来的挑战。以及面对这些挑战,GPU算力需要从单卡算力管理、单机多卡算力管理、多机多卡算力管理等多个方面发展出来的业界通用的技术。