并行计算

首页 标签 并行计算
# 并行计算 #
关注
5096内容
|
18小时前
|
MATLAB在机器学习模型训练与性能优化中的应用探讨
本文介绍了如何使用MATLAB进行机器学习模型的训练与优化。MATLAB作为强大的科学计算工具,提供了丰富的函数库和工具箱,简化了数据预处理、模型选择、训练及评估的过程。文章详细讲解了从数据准备到模型优化的各个步骤,并通过代码实例展示了SVM等模型的应用。此外,还探讨了超参数调优、特征选择、模型集成等优化方法,以及深度学习与传统机器学习的结合。最后,介绍了模型部署和并行计算技巧,帮助用户高效构建和优化机器学习模型。
vllm部署模型要点
vllm部署模型要点
用户实操:如何以龙蜥操作系统为底座在 CPU 上运行 DeepSeek-R1
介绍如何在 CPU 上使用 llama.cpp 推理 671B 版本的 DeepSeek R1,以及实际效果。
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
Step-Video-T2V:碾压Sora?国产开源巨兽Step-Video-T2V杀到:300亿参数一键生成204帧视频
Step-Video-T2V 是阶跃星辰团队推出的开源文本到视频模型,拥有 300 亿参数,能生成长达 204 帧的高质量视频。它支持中英文提示输入,并通过深度压缩的变分自编码器和扩散 Transformer 架构实现高效生成。
X-R1:3090也能训7B模型!开源框架X-R1把训练成本打下来了:10美元训出企业级LLM
X-R1 是一个基于强化学习的低成本训练框架,能够加速大规模语言模型的后训练开发。仅需4块3090或4090 GPU,1小时内完成训练,成本低于10美元。
KTransformers:告别天价显卡!国产框架让单卡24G显存跑DeepSeek-R1 671B大模型:推理速度飙升28倍
KTransformers 是由清华大学和趋境科技联合推出的开源项目,能够优化大语言模型的推理性能,降低硬件门槛。支持在仅24GB显存的单张显卡上运行671B参数的满血版大模型。
|
8天前
|
《探秘Downpour SGD算法:原理与多元应用场景解析》
Downpour SGD是随机梯度下降(SGD)的一种变体,采用参数服务器架构,通过数据并行机制将大规模数据集分割到多个工作节点进行并行计算。它使用异步梯度更新策略,减少通信开销,提高训练效率,并结合自适应学习率调整机制,确保模型稳定收敛。该算法在图像识别、语音识别、自然语言处理和推荐系统等领域表现出色,显著加速模型训练,提升性能和准确性。
免费试用
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等