流计算

首页 标签 流计算
# 流计算 #
关注
31272内容
|
5月前
|
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
|
5月前
|
Python创意爱心代码大全:从入门到高级的7种实现方式
本文分享了7种用Python实现爱心效果的方法,从简单的字符画到复杂的3D动画,涵盖多种技术和库。内容包括:基础字符爱心(一行代码实现)、Turtle动态绘图、Matplotlib数学函数绘图、3D旋转爱心、Pygame跳动动画、ASCII艺术终端显示以及Tkinter交互式GUI应用。每种方法各具特色,适合不同技术水平的读者学习和实践,是表达创意与心意的绝佳工具。
初识华为RazorAttention
RazorAttention是一种静态KV Cache压缩算法,旨在解决长上下文大型语言模型(LLM)中KV缓存占用显存过大的问题。通过基于注意力头的有效视野动态调整KV Cache大小,RazorAttention能够压缩70%的KV Cache,同时保持模型长序列能力几乎无损。该方法保护检索头(包括Echo Head和Induction Head)的KV Cache,确保重要信息不丢失,并对非检索头进行压缩优化。相比在线动态压缩方法,RazorAttention无需实时计算,兼容FlashAttention,显著降低存储与计算开销,为模型部署提供高效解决方案。
|
5月前
| |
来自: 数据库
StarRocks 助力首汽约车精细化运营
本文由首汽约车大数据负责人任智红在StarRocks年度峰会上的演讲整理而成,分享了StarRocks在企业内部的应用实践。文章详细介绍了StarRocks如何助力首汽约车实现精细化运营,涵盖运效诊断、供需平衡联动及自助多维分析等核心业务场景。通过引入StarRocks,公司实现了秒级数据处理与查询性能提升,大幅降低了开发和维护成本,推动了数据驱动的业务发展。未来,首汽约车计划进一步整合系统、拓展应用场景,并优化存算分离与资源隔离策略,持续提升数据处理效率与业务稳定性。
Flink Shuffle 技术演进之路
本文由阿里云智能Flink团队郭伟杰与哔哩哔哩蒋晓峰在Flink Forward Asia 2024上的分享整理而成,聚焦Flink Shuffle技术的演进与未来规划。内容涵盖低延迟的Pipelined Shuffle、高吞吐的Blocking Shuffle、流批一体的Hybrid Shuffle三大模式及其应用场景,并探讨了Flink与Apache Celeborn的整合、性能优化及长期发展路线图。通过Hybrid Shuffle等创新技术,Flink实现了资源调度灵活性与高性能的平衡,为流批一体化计算提供了强大支持。未来,社区将进一步优化Shuffle机制,提升系统智能化与易用性。
|
5月前
| |
来自: 云原生
当实时消费遇到 SPL:让数据处理更高效、简单
SLS 对实时消费进行了功能升级,推出了 基于 SPL 的规则消费功能。在实时消费过程中,用户只需通过简单的 SPL 配置即可完成服务端的数据清洗和预处理操作。通过SPL消费可以将客户端复杂的业务逻辑“左移”到服务端,从而大幅降低了客户端的复杂性和计算开销。
Flink批处理自适应执行计划优化
本文整理自阿里集团高级开发工程师孙夏在Flink Forward Asia 2024的分享,聚焦Flink自适应逻辑执行计划与Join算子优化。内容涵盖自适应批处理调度器、动态逻辑执行计划、自适应Broadcast Hash Join及Join倾斜优化等技术细节,并展望未来改进方向,如支持更多场景和智能优化策略。文章还介绍了Flink UI调整及性能优化措施,为批处理任务提供更高效、灵活的解决方案。
|
6月前
| |
来自: 数据库
StarRocks 存算分离在京东物流的落地实践
本文分享了京东物流在StarRocks存算分离架构上的实践与成果。通过将UData平台从存算一体升级为存算分离,显著提升了查询性能和资源利用率,同时大幅降低了存储成本(90%)和计算资源成本(30%)。文章详细介绍了存算分离的背景、部署方案、性能表现及优化措施,包括联邦查询、实时写入、Compaction调优等关键技术点。未来,京东物流将持续推动存算分离的应用拓展,并探索更多降本增效策略,如Stream Load任务合并与主动缓存管理。
Flink + Doris 实时湖仓解决方案
本文整理自SelectDB技术副总裁陈明雨在Flink Forward Asia 2024的分享,聚焦Apache Doris与湖仓一体解决方案。内容涵盖三部分:一是介绍Apache Doris,一款高性能实时分析数据库,支持多场景应用;二是基于Doris、Flink和Paimon的湖仓解决方案,解决批流融合与数据一致性挑战;三是Doris社区生态及云原生发展,包括存算分离架构与600多位贡献者的活跃社区。文章深入探讨了Doris在性能、易用性及场景支持上的优势,并展示了其在多维分析、日志分析和湖仓分析中的实际应用案例。
免费试用