EdgeShard:通过协作边缘计算实现高效的大语言模型推理——论文解读
EdgeShard是一种基于协作边缘计算的大语言模型(LLM)推理框架,旨在解决LLM在云端部署面临的延迟高、带宽压力大和隐私泄露等问题。通过将LLM分片部署在多个边缘设备上,结合云边协同与设备间协作,EdgeShard实现了高效的模型推理。其核心创新包括:联合设备选择与模型划分优化、支持流水线并行与微批处理、提出EdgeShard-No-Bubbles策略以减少设备空闲时间,从而显著提升推理吞吐量并降低延迟。实验表明,EdgeShard在异构边缘设备上可实现高达50%的延迟降低和2倍的吞吐量提升,支持全精度模型推理而无精度损失,为资源受限的边缘环境提供了高效的LLM部署方案。
一文带你讲透数据仓库分层!
在数据处理中,常遇到数据混乱、指标不一致、开发排期长等问题,根源往往在于数据分层设计不合理。本文详解数据仓库分层(ODS、DWD、DWS、DM、APP等),阐述其在数据清洗、整合、管理及应用中的关键作用,帮助提升数据质量、减少重复开发、增强系统扩展性,从而高效支撑业务决策。
Java Stream API 的强大功能
Java Stream API 是 Java 8 引入的重要特性,它改变了集合数据的处理方式。通过声明式语法,开发者可以更简洁地进行过滤、映射、聚合等操作。Stream API 支持惰性求值和并行处理,提升了代码效率和可读性,是现代 Java 开发不可或缺的工具。
公募REITs公告PDF文档处理项目
本项目是一个专门用于处理基础设施公募REITs(Real Estate Investment Trusts)公告PDF文件的完整RAG数据处理管道,也适用于其他公告PDF文件,应用多模态大模型,可高效提升文本提取内容。系统能够自动化地将PDF公告文档转换为结构化数据,能够检测表格、实现跨页表格拼接,并将表格内容还原为便于检索的文本信息。并构建向量数据库和 Elasticsearch 以支持智能检索与问答系统。
实时计算系列-----第一话:前言
本文主要分享实时计算与数仓的实践经验,涵盖架构设计、流程思路及问题处理,强调根据业务需求灵活选择技术方案,避免过度依赖固定技术栈,注重资源、时间与业务的平衡,提升实际应用效率。