为什么要用TorchEasyRec processor?
TorchEasyRec处理器支持Intel和AMD的CPU服务器及GPU推理,兼容普通PyTorch模型。它具备TorchEasyRec的特征工程(FG)和模型推理功能,提供更快的推理性能,降低成本。通过Item Feature Cache特性,它能够缓存特征以减少网络传输,进一步提升特征工程与推理的速度。
从词袋到Transformer:自然语言处理的演进与实战
自然语言处理(NLP)是人工智能的重要分支,从早期的规则系统发展到如今的深度学习模型,经历了词袋模型、词嵌入、RNN/LSTM/GRU,再到革命性的Transformer架构。本文通过代码和案例详细介绍了这些技术的演进,并展示了如何从简单的词袋模型过渡到强大的Transformer,涵盖文本分类等实战应用,帮助读者深入理解NLP的核心技术和未来发展潜力。
DeepSeek进阶开发与应用1:DeepSeek框架概述与基础应用
DeepSeek是一个高效、灵活的深度学习框架,旨在简化模型的构建、训练和评估。其核心特点包括模块化设计、自动微分、多后端支持及易于扩展。本文通过手写数字识别的CNN模型实例,展示了DeepSeek的安装、数据准备、模型构建、编译、训练与评估过程,最终模型在测试集上达到了98%以上的准确率。
从零开始:如何训练自己的AI模型
### 从零开始:如何训练自己的AI模型
训练AI模型如同培养新生儿,需耐心与技巧。首先明确目标(如图像识别、自然语言处理),选择框架(TensorFlow、PyTorch)。接着收集并预处理数据,确保多样性和准确性。然后设计模型结构,如卷积神经网络(CNN),并通过代码实现训练。训练后评估模型性能,调优以避免过拟合。最后部署模型至实际应用。通过猫狗分类器案例,掌握关键步骤和常见问题。训练AI模型是不断迭代优化的过程,实践才能真正掌握精髓。
基于一阶梯度的图像亚像素位移matlab仿真,带GUI界面
本项目提供图像亚像素位移估计算法,使用Matlab2022a开发。完整程序无水印运行效果佳,附带详细中文注释代码和操作视频。该算法通过一阶梯度信息和泰勒级数展开,实现比像素更精细的位置变化测量,广泛应用于医学影像、遥感图像、视频监控、精密测量等领域,显著提升图像配准和分析精度。