算法框架/工具

首页 标签 算法框架/工具
# 算法框架/工具 #
关注
10834内容
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
5月前
| |
SnapViewer:解决PyTorch官方内存工具卡死问题,实现高效可视化
深度学习训练中,GPU内存不足(OOM)是常见难题。PyTorch虽提供内存分析工具,但其官方可视化方案存在严重性能瓶颈,尤其在处理大型模型快照时表现极差。为解决这一问题,SnapViewer项目应运而生。该项目通过将内存快照解析为三角形网格结构并借助成熟渲染库,充分发挥GPU并行计算优势,大幅提升大型快照处理效率。此外,SnapViewer优化了数据处理流水线,采用Rust和Python结合的方式,实现高效压缩与解析。项目不仅解决了现有工具的性能缺陷,还为开发者提供了更流畅的内存分析体验,对类似性能优化项目具有重要参考价值。
|
5月前
|
《深度探秘:Java构建Spark MLlib与TensorFlow Serving混合推理流水线》
本文探讨了如何结合Apache Spark MLlib、TensorFlow Serving和Java构建混合推理流水线。Spark MLlib利用分布式计算高效处理大规模数据,完成模型训练;TensorFlow Serving专注于模型部署,提供稳定高效的推理服务;Java则以其稳健性协调两者,实现高性能与扩展性。文章分析了环境搭建、模型训练与集成、输入输出处理及性能优化等关键环节,并讨论了兼容性与性能瓶颈等挑战。这一架构在医疗、金融等领域具有广阔应用前景,展现了强大的技术潜力。
|
5月前
|
《深度剖析:Java利用ONNX Runtime部署ViT模型的关键路径》
ViT将Transformer引入视觉领域,通过自注意力机制捕捉图像长距离依赖,超越传统CNN局限,在图像分类等任务中表现卓越。PyTorch以其动态图机制和简洁API助力ViT开发,而ONNX Runtime作为跨平台推理引擎,实现从PyTorch到部署的无缝衔接。在Java环境中,借助ONNX Runtime加载ViT模型,优化性能并解决兼容性问题,为智能安防、自动驾驶等领域带来全新可能。这场技术融合之旅充满挑战与机遇,推动计算机视觉迈向新高度。
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
|
5月前
| |
提升模型泛化能力:PyTorch的L1、L2、ElasticNet正则化技术深度解析与代码实现
本文将深入探讨L1、L2和ElasticNet正则化技术,重点关注其在PyTorch框架中的具体实现。关于这些技术的理论基础,建议读者参考相关理论文献以获得更深入的理解。
|
5月前
| |
BayesFlow:基于神经网络的摊销贝叶斯推断框架
BayesFlow 是一个基于 Python 的开源框架,利用摊销神经网络加速贝叶斯推断,解决传统方法计算复杂度高的问题。它通过训练神经网络学习从数据到参数的映射,实现毫秒级实时推断。核心组件包括摘要网络、后验网络和似然网络,支持摊销后验估计、模型比较及错误检测等功能。适用于流行病学、神经科学、地震学等领域,为仿真驱动的科研与工程提供高效解决方案。其模块化设计兼顾易用性与灵活性,推动贝叶斯推断从理论走向实践。
|
6月前
|
《 PyTorch 2.3革新:torch.compile自动生成CUDA优化内核全解》
torch.compile是PyTorch 2.3推出的革命性功能,通过即时编译(JIT)技术优化模型运行速度。它借助TorchDynamo提取计算图,并通过TorchInductor生成高度优化的CUDA内核,充分发挥GPU并行计算能力。支持默认、reduce-overhead和max-autotune三种模式,分别适用于不同性能需求场景。尽管在复杂模型或动态计算图中可能面临挑战,但通过调整参数或结合其他优化技术,仍可显著提升性能。这一工具极大简化了CUDA代码优化流程,为深度学习开发提供了强大支持。
AI界的"翻译官":ONNX如何让各框架模型和谐共处
还在为不同框架间的模型转换头疼?ONNX让你在PyTorch训练的模型可以无缝在TensorFlow部署,甚至能让模型在手机上飞速运行。本文带你了解这个AI领域的'瑞士军刀',轻松实现跨平台高性能模型部署。
免费试用