决策智能

首页 标签 决策智能
# 决策智能 #
关注
2130内容
|
1月前
|
《主动式智能导购AI助手构建》解决方案评测报告
本文介绍了《主动式智能导购AI助手构建》解决方案的部署体验与文档帮助、实践原理和架构理解、百炼大模型和函数计算的应用,以及生产环境应用步骤指导。尽管部署过程中遇到一些技术问题,但通过查阅官方文档和社区资源得以解决。文章指出,官方文档在错误排查、系统架构细节、模型训练优化及生产环境调优等方面仍有改进空间,建议增加更多实例和详细说明以提升用户体验。
Optima:清华联合北邮推出优化通信效率和任务有效性的训练框架
Optima是由清华大学和北京邮电大学联合推出的一个优化通信效率和任务有效性的训练框架。该框架通过迭代生成、排名、选择和训练范式,显著提高了基于大型语言模型(LLM)的多智能体系统(MAS)的通信效率和任务效果。Optima不仅减少了令牌使用,还为改进推理时间扩展法则提供了新的可能性。
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
2月前
|
量子计算在金融领域的应用探索
量子计算凭借其强大的计算能力和数据处理能力,正逐渐在金融领域展现巨大潜力。本文探讨了量子计算在风险管理、投资组合优化、高频交易、反欺诈及金融衍生品定价等方面的应用,介绍了当前进展及未来挑战,展示了量子计算如何提升金融决策效率和准确性。
|
2月前
|
2024.11|全球具身智能的端到端AI和具身Agent技术发展到哪里了
2024年,具身智能领域取得显著进展,特别是在端到端AI控制系统和多模态感知技术方面。这些技术不仅推动了学术研究的深入,也为科技公司在实际应用中带来了突破。文章详细介绍了端到端AI的演化、自监督学习的应用、多模态感知技术的突破、基于强化学习的策略优化、模拟环境与现实环境的迁移学习、长程任务规划与任务分解、人机协作与社会交互能力,以及伦理与安全问题。未来几年,具身智能将在多模态感知、自监督学习、任务规划和人机协作等方面继续取得重要突破。
|
2月前
|
Python中解决TSP的方法
旅行商问题(TSP)是寻找最短路径,使旅行商能访问每个城市一次并返回起点的经典优化问题。本文介绍使用Python的`ortools`库解决TSP的方法,通过定义城市间的距离矩阵,调用库函数计算最优路径,并打印结果。此方法适用于小规模问题,对于大规模或特定需求,需深入了解算法原理及定制策略。
|
2月前
|
数据结构之货仓选址问题(DFS)
货仓选址问题是供应链管理中的关键挑战,直接影响物流效率和成本。本文介绍了一种基于深度优先搜索(DFS)算法的解决方案,通过计算不同位置的总距离,找到使总距离最小的最优货仓位置。此方法适用于小规模数据集,易于理解与实现,但随数据量增大,效率显著下降。示例代码展示了如何利用DFS算法计算最小总距离,并提供了完整的实现流程。
|
2月前
| |
基于qwen2.5 Instruct的智能法庭预研
基于Qwen-2.5 Instruct的大模型智能法庭预研,旨在通过智能化手段提高庭审效率、确保司法公正、降低运营成本。核心功能涵盖智能庭审助手、文书生成、案件检索与分析及智能协作平台,利用自然语言处理、多模态融合等技术,实现庭审记录实时生成、法律条款动态匹配、证据多维度解析等,服务于民事、刑事及行政案件。项目注重数据安全与隐私保护,同时规划了智能仲裁平台、跨区域法庭协作等未来扩展方向,为构建高效、公正的智慧司法体系奠定基础。
免费试用