AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
Apache RocketMQ 推出轻量级通信模型 LiteTopic,专为 AI 时代多智能体协作设计。它通过百万级队列支持、会话状态持久化与断点续传能力,解决传统架构中通信脆弱、状态易失等问题。结合 A2A 协议与阿里巴巴 AgentScope 框架,实现高可靠、低延迟的 Agent-to-Agent 通信,助力构建稳定、可追溯的智能体应用。现已开源并提供免费试用,加速 AI 应用落地。
双第一,阿里云领跑安全运营智能体
全球权威咨询机构IDC发布了《中国安全运营智能体实测,2025》(Doc#CHC52346025,2025年11月)报告,报告针对国内20余家云厂商和安全厂商,从安全风险评估智能体、告警分诊智能体、事件调查与响应智能体、策略与规则管理智能体、威胁情报的收集与分析智能体、漏洞管理智能体、安全报告智能体、智能体管理等八大实测维度进行测评,整个测评流程依据IPDRR安全运营框架进行了严格测试。
《游戏指标生态与自驱决策体系搭建攻略》
本文提出搭建以玩家行为基因为核心、动态决策闭环为骨架的游戏数据智能生态体系,主张摒弃通用指标模板,构建贴合品类特性的指标生态,搭建“行为溯源-价值转化-体验反馈-策略优化”的动态联动闭环;同时打造能深度解码玩家意图、实现场景自适应决策及反馈迭代自进化的智能决策系统,通过指标阈值动态校准与决策优先级智能分配实现两者高效联动,优化数据采集处理链路,并规避决策过度智能化、指标孤岛等误区。
AgentScope 1.0 全面进化,从原型走向产业落地!
AgentScope全新升级,打造生产级智能体生态:推出开箱即用的Alias、EvoTraders等应用,支持多场景落地;强化基建,实现动态技能扩展、白盒化运行与多语言支持;集成语音交互、数据工程等能力,提供从开发到部署的全链路解决方案。
微调技术
微调是适配预训练模型的关键技术,涵盖指令微调、对齐微调与高效参数微调。LoRA通过低秩分解减少参数量,提升训练效率;其变体如LoRA+、QLoRA、AdaLoRA进一步优化性能与资源消耗。Prefix Tuning与Prompt Tuning则通过少量参数实现高效微调,适用于不同场景需求。(239字)
构建AI智能体:五十六、从链到图:LangGraph解析--构建智能AI工作流的艺术工具
本文介绍了LangGraph这一基于LangChain的库,它突破了传统线性链式开发的局限,通过图计算模型实现复杂AI应用的构建。LangGraph的核心优势在于:1)支持动态图结构,实现循环和条件路由;2)内置状态管理,维护应用数据流;3)天然支持多智能体协作。与传统开发方式相比,LangGraph通过节点、边和状态的抽象,提供了更清晰的业务逻辑表达、更健壮的错误处理、更好的可观测性,以及更便捷的团队协作和功能扩展能力。