知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3466内容
|
9月前
|
RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
RT-DETR改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新)
|
9月前
|
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
|
9月前
|
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
RT-DETR改进策略【卷积层】| HWD,引入`Haar小波变换`到下采样模块中,减少信息丢失
|
9月前
|
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
YOLOv11改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新C2PSA)
|
9月前
|
YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)
YOLOv11改进策略【Conv和Transformer】| 上下文转换器CoT 结合静态和动态上下文信息的注意力机制 (含二次创新C3k2)
|
9月前
|
YOLOv11改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势
YOLOv11改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势
免费试用