知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3420内容
GraphAgent:自动构建知识图谱,能够处理结构化和非结构化数据,并通过知识图谱展示复杂关系
GraphAgent 是香港大学和香港科技大学联合推出的智能图形语言助手,能够处理结构化和非结构化数据,并通过知识图谱展示复杂关系。
使用CAMEL框架和Qwen模型自动进行数据获取及报告与知识图谱生成
此笔记本演示如何设置和利用 CAMEL 的检索增强生成(RAG)结合 Milvus 进行高效的网页抓取、多智能体角色扮演任务和知识图谱构建。我们将通过一个使用 Qwen 模型对 2024 年巴黎奥运会的土耳其射手进行全面研究的例子来逐步演示。
|
9月前
|
《人工智能知识图谱构建与应用的最新突破与成果》
在人工智能蓬勃发展的背景下,知识图谱的构建与应用成为热点。新技术如基于大语言模型和向量库的方法,提升了实体识别、关系抽取及图谱优化的效率和精度。这些创新已在医疗、电力、信息检索等领域取得显著成效,如思通数科平台使病例处理速度提升40%,国网湖北电力提高信息检索准确性。未来,知识图谱将更高效、智能地处理多模态数据,并在金融、教育等更多领域发挥重要作用,但也需关注数据隐私和安全问题。
|
9月前
|
《零样本学习:突破瓶颈,开启智能新征程》
零样本学习是人工智能的前沿研究方向,旨在让机器在无特定类别样本的情况下通过推理识别新类别。其主要挑战包括数据匮乏、知识表示不准确、模型泛化能力不足及语义理解困难。解决方案涉及知识图谱、强化学习、迁移学习、多模态融合和生成式模型等技术。未来,随着技术进步,零样本学习有望实现突破并在各领域广泛应用。
基于阿里云AI购物助手解决方案的深度评测
阿里云推出的AI购物助手解决方案,采用模块化架构,涵盖智能对话引擎、商品知识图谱和个性化推荐引擎。评测显示其在智能咨询问答、个性化推荐和多模态交互方面表现出色,准确率高且响应迅速。改进建议包括提升复杂问题理解、简化推荐过程及优化话术。总体评价认为该方案技术先进,应用效果好,能显著提升电商购物体验并降低运营成本。
|
9月前
|
RAG新突破:块状注意力机制实现超低延迟检索增强
检索增强生成(RAG)技术结合检索和生成模型,有效提升大型语言模型的知识获取能力。然而,高推理延迟限制了其在实时场景的应用。论文《Block-Attention for Low-Latency RAG》提出块状注意力机制,通过将输入序列划分为独立块并预先计算缓存KV状态,显著降低推理延迟。实验结果显示,该机制在保持模型准确性的同时,大幅提高了推理效率。
|
9月前
| |
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
|
9月前
| |
神经codec模型相关论文
本文汇总了近年来在神经音频编解码器和语音语言模型领域的多项重要研究,涵盖从2020年到2024年的最新进展。这些研究包括端到端的音频编解码器、高效音频生成、高保真音频压缩、多模态表示学习等。每项研究都提供了详细的论文链接、代码和演示页面,方便读者深入了解和实验。例如,SoundStream(2021)提出了一种端到端的神经音频编解码器,而AudioLM(2022)则通过语言建模方法生成音频。此外,还有多个项目如InstructTTS、AudioDec、HiFi-Codec等,分别在表达性TTS、开源高保真音频编解码器和高保真音频压缩方面取得了显著成果。
|
9月前
| |
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
免费试用