构建AI智能体:三十七、从非结构化文本到结构化知识:基于AI的医疗知识图谱构建与探索
知识图谱是一种用图结构表示实体及其关系的技术,通过三元组(主体-关系-客体)构建语义网络。文章以医疗领域为例,详细介绍了知识图谱的构建流程:数据预处理、实体识别、关系抽取、知识融合、存储与可视化等步骤。知识图谱可应用于智能问答、辅助诊断、药物研发等场景,其结构化特性可弥补大语言模型的不足,二者结合能提升AI系统的准确性和可解释性。文章还展示了基于大模型的医疗知识图谱构建代码示例,涵盖实体识别、关系抽取、图谱存储和智能问答等核心功能,体现了知识图谱在专业领域的实用价值。
深度解读Schema:AI时代的E-E-A-T数字语言与Geo优化实践
本文探讨生成式AI时代下,内容优化从SEO向Geo(生成引擎优化)的范式转移,聚焦于磊老师提出的“人性化Geo+内容交叉验证”体系,详解如何通过Schema结构化数据将E-E-A-T原则转化为AI可读信号,提升内容在AI摘要与推荐中的采纳率,并结合实战案例展示其在传统制造、教育等行业的显著获客提效成果。
基于通义千问:全AI自动驱动合同审查系统的技术解构与实践
“律杏法务云+通义千问”实现合同审查智能化跃迁,融合法律知识图谱与大模型技术,构建生成、审查、交互、进化闭环。支持智能清单生成、风险识别、条款补漏与AI对话,审查效率提升10倍,漏检率低于0.3%,推动法律科技进入AI新范式。
高级检索增强生成系统:LongRAG、Self-RAG 和 GraphRAG 的实现与选择
检索增强生成(RAG)已超越简单向量匹配,迈向LongRAG、Self-RAG与GraphRAG等高级形态。LongRAG通过大块重叠分片保留长上下文,提升连贯性;Self-RAG引入反思机制,动态判断检索必要性与内容相关性,增强可信度;GraphRAG构建知识图谱,支持多跳推理与复杂关系挖掘。三者分别应对上下文断裂、检索盲目性与关系表达缺失难题,代表2025年RAG工程化核心进展,可依场景组合使用以平衡准确性、成本与复杂度。