搜索推荐

首页 标签 搜索推荐
# 搜索推荐 #
关注
32122内容
kde
|
15小时前
| |
来自: 云原生
🚀 RAGFlow Docker 部署全流程教程
RAGFlow是开源的下一代RAG系统,融合向量数据库与大模型,支持全文检索、插件化引擎切换,适用于企业知识库、智能客服等场景。支持Docker一键部署,提供轻量与完整版本,助力高效搭建私有化AI问答平台。
|
1天前
|
《SaaS网关多租户治理:从串流到稳控的实践》
本文记录某制造集团SaaS协同平台API网关多租户治理的重构实践。初代网关因依赖“路径前缀+静态IP映射”,在租户增至8家(含3家私有云部署)后,爆发数据串流、混合云适配差、个性化需求迭代慢、故障定位难四大问题。通过搭建“租户元数据+动态路由表”双层隔离机制解决串流,设计多维度决策的混合云路由策略引擎降低转发延迟,构建配置化规则引擎实现零代码定制,并攻克缓存穿透、路由断连、规则冲突三大细节难题。最终租户串流率归零,混合云路由延迟降45%,规则生效时间从2天缩至10秒。
02_用LLM写文章:从提示到生成高质量内容
在2025年的今天,大语言模型(LLM)已经从实验性技术发展成为内容创作者的强大助手。随着GPT-5、Claude 3.5、Llama 3等先进模型的出现,AI辅助写作不仅变得更加普及,而且质量也达到了前所未有的高度。本文将深入探讨如何利用LLM进行高效、高质量的内容创作,从提示设计到内容优化的全过程,帮助你在这个AI时代掌握内容创作的新技能。
108_连续微调:链式任务适应
在大模型时代,如何让预训练模型高效地适应多个相关任务,同时保持知识的连贯性和完整性,成为了一个重要的研究方向。连续微调(Continual Fine-tuning)作为一种新兴的微调范式,通过链式任务适应(Sequential Task Adaptation)机制,实现了模型在顺序学习多个任务时的知识保留和迁移。本文将深入探讨连续微调的核心原理、实现方法、关键技术挑战以及2025年的最新研究进展,为读者提供全面的技术指导和实践指南。
07_大模型未来趋势:2025年AI技术前沿展望
2025年,人工智能技术正站在一个新的历史节点上。经过过去几年的爆发式发展,大语言模型(LLM)已从实验室走向各行各业,成为推动数字化转型的核心力量
123_自监督任务变体:Causal LM详解 - GPT-style下一词预测机制与训练优化
2025年,自监督学习已成为大型语言模型(LLM)训练的核心范式,其中因果语言建模(Causal Language Modeling, CLM)作为GPT系列模型的基础训练目标,展现出了卓越的生成能力和下游任务迁移性能。与掩码语言建模(Masked Language Modeling, MLM)不同,因果语言建模专注于预测序列中的下一个词元,这种训练方式自然地适应了自回归生成的需求,为文本生成、对话系统等任务奠定了坚实基础。
12_机器翻译入门:多语言LLM应用
在全球化背景下,语言障碍一直是信息交流、商业合作和文化传播的重要阻碍。2025年,随着多语言大语言模型(LLM)技术的突破,机器翻译已经从简单的单词转换发展为能够理解上下文、处理复杂句式、适应文化差异的智能系统。本文将带您入门多语言LLM在机器翻译领域的应用,重点介绍使用mT5(多语言T5)模型实现英语到中文的翻译,并探讨文化适应等高级话题。
18_TF-IDF向量表示:从词频到文档相似度
在自然语言处理(NLP)领域,如何将非结构化的文本数据转换为计算机可以处理的数值形式,是一个基础性的关键问题。词袋模型(Bag of Words, BoW)作为一种简单直接的文本表示方法,虽然能够捕获文本中的词频信息,但无法区分不同词的重要性。为了解决这个问题,TF-IDF(Term Frequency-Inverse Document Frequency)向量表示方法应运而生,它通过评估词语对文档集合中某个文档的重要程度,为文本分析提供了更准确的数值表示。
49_选择框架:任务类型与模型匹配
在大语言模型(LLM)应用开发的早期阶段,选择合适的模型架构和框架往往是项目成功的关键第一步。随着2025年LLM技术的快速发展,市场上可用的模型和框架数量激增,如何基于特定任务类型选择最匹配的解决方案成为开发者面临的重要挑战。本文将深入探讨任务类型与LLM模型匹配的方法论,重点介绍基于决策树的模型选择框架,并通过实际代码示例演示如何构建和应用这一框架。
53_多模态LLM:图像理解的新范式
在人工智能技术快速发展的今天,单一模态的语言模型已经无法满足日益复杂的应用需求。2025年,多模态大型语言模型(MLLM)的崛起标志着AI技术进入了一个新的发展阶段,特别是在图像理解与文本生成的结合方面取得了突破性进展。本文将深入剖析多模态LLM的技术原理、架构设计、性能评估及实际应用案例,探讨视觉-语言融合技术如何重塑AI应用的边界,以及在未来发展中面临的挑战与机遇。
免费试用