机器学习/深度学习

首页 标签 机器学习/深度学习
# 机器学习/深度学习 #
关注
71349内容
基于YOLOv8的可回收瓶类垃圾快速识别与自动化分拣|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于 YOLOv8 构建了一套可回收瓶类垃圾的实时识别与自动化分拣系统,从数据集构建、模型训练到 PyQt5 可视化界面部署,形成了完整的工程化闭环。系统能够对多种瓶类废弃物进行高精度识别,并支持图片、视频、摄像头流等多场景实时处理,适用于垃圾回收站、环卫中转站、产线分拣系统等实际应用场景。
基于 YOLOv8 的焊接表面缺陷检测|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于 YOLOv8 深度学习目标检测模型,结合 PyQt5 图形界面,实现了一个完整的焊接表面缺陷检测系统。通过实际演示可以看出,该系统能够对单张图片、批量图片、视频以及实时摄像头流进行高精度检测,并自动标注缺陷位置和类别,支持检测结果的保存和复查,为工业生产线提供了高效、智能化的焊接质量监控手段。
基于YOLOv8的牛行为检测识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目通过 YOLOv8 模型与 PyQt5 界面结合,实现了牛行为的高效识别与分类。5000张高质量标注数据保证了模型的准确性,多样化场景增强了泛化能力。系统简单易用,支持图片、视频、摄像头多种输入方式,为智能养殖和畜牧管理提供了高效工具。无论是科研实验还是实际牧场监控,本项目都可快速部署,开箱即用。
|
6天前
|
从零训练一个 ChatGPT:用 PyTorch 构建自己的 LLM 模型
本文介绍如何使用PyTorch从零构建类似ChatGPT的大型语言模型,涵盖Transformer架构、数据预处理、训练优化及文本生成全过程,助你掌握LLM核心原理与实现技术。(238字)
数字人平台的技术突破与应用环境
数字人企业正引领科技新浪潮,融合AI、计算机图形学等技术,推动虚拟与现实深度融合。从金融客服到医疗问诊,数字人以降本增效、个性化服务重塑千行百业。
淘宝拍立淘 API 核心参数拆解:image、pic_type 与 search_type 配置技巧
通过精准配置image、pic_type与search_type参数,并结合预处理、缓存等优化手段,可显著提升淘宝拍立淘API的搜索精度与效率,为商品推荐、竞品分析等场景提供可靠技术支撑。
面试官连问21题:Transformer底层原理与测试工程全解析!
Transformer是大模型的核心架构,掌握其原理有助于理解AI推理、设计测试策略、排查异常。本文梳理21个高频面试题,从测试开发视角解析模块化结构与关键机制,助力构建智能测试体系。
|
6天前
|
Python大数据驱动的图书推荐与分析系统:从数据到智能决策的实践探索
在信息爆炸时代,图书推荐系统利用Python大数据技术,融合用户行为、图书元数据与外部动态,构建“内容+协同+深度学习”混合模型,实现精准个性化推荐。通过三层架构与算法创新,破解冷启动、小众书推荐等难题,助力每本书找到真正读者。
数字人平台技术、场景应用优势
数字人企业正引领技术革命,融合AI、CG与NLP,打造虚实交互的“数字生命体”,从效率提升到体验升级,重塑人机共生未来。
MoE架构:大模型的规模扩展革命
MoE(混合专家)架构通过稀疏激活多个专业化子网络,实现高效计算与大规模模型的结合,提升训练推理效率及模型可扩展性,成为大模型发展的重要范式。
免费试用