HART:麻省理工学院推出的自回归视觉生成模型
HART(Hybrid Autoregressive Transformer)是麻省理工学院推出的自回归视觉生成模型,能够直接生成1024×1024像素的高分辨率图像,质量媲美扩散模型。HART基于混合Tokenizer技术,显著提升了图像生成质量和计算效率,适用于数字艺术创作、游戏开发、电影和视频制作等多个领域。
OmniBooth:华为诺亚方舟联合港科大推出的图像生成框架
OmniBooth是由华为诺亚方舟实验室和港科大研究团队联合推出的图像生成框架,支持基于文本提示或图像参考进行空间控制和实例级定制。该框架通过用户定义的掩码和相关联的文本或图像指导,精确控制图像中对象的位置和属性,提升文本到图像合成技术的可控性和实用性。
从基础到人脸识别与目标检测
前言
从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。
颜色编码格式,图像格式和视频压缩格式
(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。
rgb8图像格式:常用于显示系统,如电视和计算机屏幕。
RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色
Qt侧边栏的动态切换:隐藏与显示技术详解
在现代用户界面设计中,侧边栏(Sidebar)是一个常见的组件,它为用户提供了导航和工具面板的功能。在某些应用场景下,我们可能需要动态地隐藏或显示侧边栏,以优化界面布局或提供更灵活的用户体验。本文将分享如何在Qt框架下实现侧边栏的隐藏与呈现,包括技术细节和代码示例。
阿里云服务器计算型c8i实例解析:实例规格性能及使用场景和最新价格参考
计算型c8i实例作为阿里云服务器家族中的重要成员,以其卓越的计算性能、稳定的算力输出、强劲的I/O引擎以及芯片级的安全加固,广泛适用于机器学习推理、数据分析、批量计算、视频编码、游戏服务器前端、高性能科学和工程应用以及Web前端服务器等多种场景。本文将全面介绍阿里云服务器计算型c8i实例,从规格族特性、适用场景、详细规格指标、性能优势、实际应用案例,到最新的活动价格,以供大家参考。