自然语言处理

首页 标签 自然语言处理
# 自然语言处理 #
关注
28397内容
从文字到向量:Transformer的语言数字化之旅
向量化是将文字转化为数学向量的过程,使计算机能理解语义。通过分词、构建词汇表、词嵌入与位置编码,文本被映射到高维空间,实现语义相似度计算、搜索、分类等智能处理,是NLP的核心基础。
Transformer参数规模深度解析:从模型聪明说到实际影响
Transformer参数规模显著影响模型能力,参数越多,知识容量与模式识别能力越强,但存在边际效应和过拟合风险。现代大模型通过混合专家、量化压缩等技术提升参数效率,未来趋势是优化参数使用而非盲目扩大规模,实现性能与效率的平衡。(238字)
GPT与BERT深度解析:Transformer的双子星架构
GPT基于Transformer解码器,擅长文本生成;BERT基于编码器,专注文本理解。二者在架构、注意力机制和训练目标上差异显著,分别适用于生成与理解任务,体现了AI智能的多元化发展。
Transformer架构深度解析:重新定义序列建模的革命
Transformer是一种基于自注意力机制的神经网络架构,2017年由Google提出,彻底摒弃了RNN的循环结构,实现并行化处理序列数据。其核心通过QKV机制捕捉长距离依赖,以“圆桌会议”式交互提升效率与性能,成为大模型时代的基石。
《AI大模型技术全景解读》从机器学习到现代大模型
人工智能历经从机器学习到深度学习的演进,以Transformer架构为里程碑,推动大模型时代到来。技术发展涵盖CNN、RNN、BERT、GPT等核心模型,逐步实现语言理解、生成与多模态能力突破,正朝高效推理、安全对齐与普惠应用迈进。(238字)
|
6天前
| |
构建AI智能体:十七、大模型的幻觉难题:RAG 解决AI才华横溢却胡言乱语的弊病
RAG(检索增强生成)是一种结合信息检索与大型语言模型的技术,旨在解决LLM的幻觉问题。其核心流程包括:离线处理阶段(知识库构建)和在线处理阶段(用户查询应答)。通过将外部知识源转换为向量存入数据库,当用户提问时,系统会检索相关内容并增强提示,再由LLM生成准确答案。RAG技术显著提升了AI在专业领域的可靠性,适用于智能客服、企业知识管理、内容创作等场景。尽管面临检索精度、多模态处理等挑战,RAG仍是AI实用化的重要突破方向。
2025年第13批中国深度合成算法备案分析报告
2025年9月,第13批深度合成算法备案公布,共586项,累计达4420项。北京、广东、浙江、上海居前列,民企为主力,覆盖教育、医疗、金融等领域。文本与对话生成占主导,数字人、多模态技术加速落地。AI应用向行业纵深发展,合规标识成常态,监管趋严推动产业规范创新。
国家网信办发布的第十四批深度合成算法备案综合分析报告
截至2025年11月,全国深度合成算法备案达5100款,广东以1329款居首,服务提供者占比77.1%。第14批新增680款创新高,医疗、教育、企业服务成主流方向,多模态与垂直领域加速发展,AI合规进入“政策+市场”双驱动新阶段。
免费试用