攻坚AI病理诊断,阿里云天池联合英特尔重磅发布《数字病理诊断排行榜》
在现代计算系统和人工智能技术加持下,传统病理学正转向数字化病理,AI 技术的加持极大解放了病理医疗资源,AI 病理未来规模可达数百亿人民币。
在此背景下,阿里云天池联合英特尔举办了「数字视觉」挑战赛,以赛事推动 AI 技术在产业中落地。
同时举办了「2020 阿里云天池数字病理视觉挑战赛和研讨会」。众多来自第三方病理诊断中心、学术界、产业界的数字病理行业专家出席了研讨。
在历时 3 个月的前期调研以及后期业内嘉宾充分讨论后,研讨会重磅发布了《数字病理诊断排行榜》,评选出了数字病理行业产业链各个环节的 Top 级企业。
天池数据集|精品数据集推荐(工业篇)
数据是人工智能时代重要的生产要素,高质量训练数据对深度学习模型的建立和优化有关键性的作用,建立大规模、高水准的标注数据集,是推动AI科研和技术前进的驱动力。
天池严选丨万字入门推荐系统
最近一周我、强子、Y哥三人,根据自身如何入门推荐系统,再结合三人分别在腾讯做广告推荐、字节做视频推荐、百度做信息流推荐的经历,整理出了这份万字入门推荐系统。内容十分详细,涵盖了推荐系统基础、进阶、实战的全部知识点,并且每一块都给出了我们自己看过且觉得高质量的参考资料,所以不管你是科班还是非科班,按照这条路线走下去,找到推荐系统相关工作是完全没问题的。
天池读书会|机器学习算法竞赛实战(文末赠书)
天池读书会之《机器学习算法竞赛实战》,由阿里云天池和图灵社区联合举办,本次邀请到图书作者本人,先就职于小米商业算法部的王贺大佬(鱼遇雨欲语与余)解读图书《机器学习算法竞赛实战》内容,以天池平台开放的二手车交易价格预测为例从实战入手了解机器学习竞赛的流程和几个核心的算法竞赛方向。
《阿里云天池大赛赛题解析(深度学习篇)》导读
时隔一年左右,天池团队在之前机器学习篇的基础上又推出了深度学习篇,同样第一时间收到了作品。抱着学习的心态仔细的阅读了下,也再次感觉受益匪浅,配合之前的机器学习篇,两本书在算法的介绍和赛题的介绍上形成了闭环,如果都能够把里面的知识点搞懂则可以在算法设计领域达到较高的水平。以下是对于深度学习篇的一个简单导读。
AI圈内卷?天池团聚请来专家集体“问诊”
近期杭州云栖大会上出现了一个“数据博物馆”,最吸引眼球的“展品”,竟是行业大规模开源数据集。不仅数量多达上百个,还覆盖零售、文娱、工业、医疗、自然科学等数十个行业。既有来自真实业务场景的商品数据,也不乏跟产业界、学术界深入合作获得的宝贵科研数据。