百度下场做GEO?笑死人了
百度所谓“GEO”实为换壳广告营销,打着AI优化旗号,行“付费上榜”之实。本质是用旧套路收割企业焦虑,而真正GEO应是高质量内容与数据驱动的生态建设,而非在枯井里打水。别做AI时代的韭菜。
构建AI智能体:六十三、基于信息论的智能医疗诊断系统:算法原理与临床验证
摘要:本文提出了一种基于信息论的智能医疗诊断系统,通过互信息、信息熵和信息增益等核心概念,构建了症状分析、疾病推理和检查推荐的综合诊断平台。系统采用模块化设计,利用概率模型生成模拟医疗数据,量化症状与疾病的关联强度,并通过热力图直观展示诊断依据。该系统能有效提升诊断准确性,优化检查资源配置,推动医疗诊断从经验依赖向数据驱动转变,为解决基层医疗资源不足等问题提供了技术支撑。
AI工具选择困难症?Spring AI帮你省掉64%的令牌费用
你的AI助手有50+个工具但每次对话前就烧掉55000个令牌?就像带着全套工具箱去拧个螺丝一样浪费!Spring AI的工具搜索模式让AI按需发现工具,实现34-64%的令牌节省,告别工具选择困难症和账单焦虑。#Spring AI #工具优化 #令牌节省 #AI开发
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
构建AI智能体:六十二、金融风控系统:基于信息熵和KL散度的异常交易检测
本文介绍了一种基于信息论的智能金融风控系统,通过KL散度、信息增益和熵等核心概念构建欺诈检测框架。系统首先生成模拟金融交易数据,区分正常与欺诈交易;然后计算各特征的数据熵和KL散度,量化分布差异;再训练随机森林模型进行预测,并创新性地结合概率和不确定性计算风险得分。实验表明,设备风险是最强欺诈指标,系统AUC达1.0,能有效识别典型欺诈模式(大额、深夜、高频交易)。该方法将抽象信息论转化为实用解决方案,在保持高性能的同时增强了模型可解释性,为智能风控提供了量化分析框架。
构建AI智能体:六十一、信息论完全指南:从基础概念到在大模型中的实际应用
摘要: 信息论是人工智能尤其是大语言模型的核心数学工具。本文系统介绍了八大核心概念: 信息量:衡量事件意外程度,公式为I(x)=-log₂P(x) 信息熵:评估系统不确定性,H(X)=-ΣP(x)log₂P(x) 联合熵/条件熵:分析多变量关系及条件不确定性 互信息:量化变量间共享信息量 KL散度:衡量概率分布差异 交叉熵:模型训练的核心损失函数 在大语言模型中,这些概念被广泛应用于: 训练阶段:交叉熵优化预测,KL散度防止过拟合 推理阶段:温度参数调节生成文本的创造性(高熵增加多样性)
构建AI智能体:六十、特征工程行业实践录:金融、电商、医疗的智能化转型
本文通过金融风控、电商推荐和医疗诊断三个行业案例,系统阐述了特征工程的实践价值与技术方法。在金融领域,通过构建稳定性评分等特征,将贷款审批坏账率从8.2%显著降低;电商行业通过实时兴趣向量等特征,使推荐点击率提升3倍;医疗领域则利用病变严重度评分等特征,将筛查效率提升5倍。研究揭示了特征工程作为连接业务需求与技术实现的关键桥梁,其核心在于将原始数据转化为机器可理解的业务语言。
SAPO:让强化学习告别“硬剪切”
SAPO提出一种稳定高效的大语言模型强化学习方法,通过平滑门控替代硬剪切,解决GRPO/GSPO梯度丢失与不稳定问题。其连续信任域、序列级一致性及token级自适应设计,显著提升训练稳定性与样本效率,适用于dense/MoE模型,在数学、代码、逻辑等多任务上表现优越。
Qwen Code 能力再升级
Qwen Code v0.3.0 正式发布!全面支持 Stream JSON、多语言界面切换,提升安全稳定与生态适配,助力开发者高效构建 AI 工具。欢迎体验并参与共建!