Refly.AI (AI工作流)架构学习指南
Refly.AI 是一个 AI 原生工作流平台,采用 Monorepo + 微服务架构,融合 LangChain、Qdrant、NestJS 与 React 技术栈。本指南系统讲解其项目架构、核心流程与模块依赖,帮助开发者从环境搭建到源码贡献,逐步掌握 AI 工作流设计与开发。
⚡阿里云百炼通义音色设计 Voice Design 使用指南🎨
通义千问 qwen-voice-design 模型支持通过文字描述快速生成定制化音色,结合 qwen3-tts-vd-realtime 可输出11种语言语音,适用于广告配音、角色塑造、有声内容创作及多语言出海等场景,提供高效、灵活的语音设计解决方案。
6步走I 大模型备案《通关手册》
本文依据《生成式人工智能服务管理暂行办法》,梳理企业上线大模型服务所需的备案流程、材料及注意事项,涵盖“是否需备案”“六步备案法”“安全评估重点”“特殊行业提示”等内容,助力企业合规落地。
⚽阿里云百炼通义万相 2.6 视频生成玩法手册
通义万相Wan 2.6是全球首个支持角色扮演的AI视频生成模型,可基于参考视频形象与音色生成多角色合拍、多镜头叙事的15秒长视频,实现声画同步、智能分镜,适用于影视创作、营销展示等场景。
2025年AI智能体来了,企业却还在试水池里扑腾!
88%企业都说用AI了,但大部分还在试点阶段扑腾?AI智能体听起来很酷,实际落地却像让ChatGPT去当总经理。揭秘为什么高效企业用AI搞创新,而不是只盯着省钱。从试点到规模化,这道坎比想象中难跨! #人工智能 #AI智能体 #企业数字化 #创新管理
2025年AI不是宠物,是会思考的幽灵!
还在把AI当作聪明宠物?错了!2025年的LLM更像召唤来的幽灵:数学题秒杀博士,却被小学生文字游戏绕晕。从RLVR到Agent,揭秘AI这种'锯齿状智能'如何改变我们的工作方式。 #人工智能 #LLM #Agent #RLVR
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
AI也会"三思而后答"?揭秘Self-RAG智能检索术
遇到AI胡说八道怎么办?Self-RAG就像给AI装了个"思考开关",让它知道什么时候该查资料、什么时候该独立思考,还能自我评估答案靠不靠谱。6步智能决策机制,让AI回答又准又稳!#人工智能 #RAG技术 #智能检索 #AI应用
AI也会说谎?揭秘可靠RAG让智能助手不再胡说八道
你的AI助手老是答非所问、胡编乱造?别急,可靠RAG技术专治各种"AI幻觉症"!通过文档相关性检查、幻觉检测和来源追溯,让你的智能客服从"胡说八道王"变身"靠谱答题员" #人工智能 #RAG #智能客服 #幻觉检测
构建AI智能体:六十七、超参数如何影响大模型?通俗讲解原理、作用与实战示例
超参数是机器学习模型训练前需要人工设定的参数,它们控制着模型的学习过程而非直接通过学习获得。文章通过生动的类比(如自行车调整、烹饪配方)解释了超参数的概念,并详细介绍了其调优流程、常见类型(学习率、批量大小等)及对模型的影响。通过实际代码示例,展示了不同超参数设置如何影响模型训练效果,强调合理调优对提升模型性能、防止过拟合和优化资源使用的重要性。文章指出,超参数调优是模型成功的关键,初学者可从默认值开始逐步实验,借助网格搜索等工具实现高效调参。