Structured Streaming和Flink实时计算框架的对比
本文对比了Structured Streaming和Flink两大流处理框架。Structured Streaming基于Spark SQL,具有良好的可扩展性和容错性,支持多种数据源和输出格式。Flink则以低延迟、高吞吐和一致性著称,适合毫秒级的流处理任务。文章详细分析了两者在编程模型、窗口操作、写入模式、时间语义、API和库、状态管理和生态系统等方面的优劣势。
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
【赵渝强老师】大数据生态圈中的组件
本文介绍了大数据体系架构中的主要组件,包括Hadoop、Spark和Flink生态圈中的数据存储、计算和分析组件。数据存储组件包括HDFS、HBase、Hive和Kafka;计算组件包括MapReduce、Spark Core、Flink DataSet、Spark Streaming和Flink DataStream;分析组件包括Hive、Spark SQL和Flink SQL。文中还提供了相关组件的详细介绍和视频讲解。
【赵渝强老师】Docker三剑客
本文介绍了Docker容器中的三个重要工具:Docker Compose、Docker Machine 和 Docker Swarm。Docker Compose用于定义和运行多容器应用,通过YAML文件简化容器管理。Docker Machine支持远程主机上的Docker安装和管理,适用于跨平台使用。Docker Swarm则提供集群管理功能,实现负载均衡和故障迁移,适合大规模部署。文中还提供了相关示例和架构图,帮助读者更好地理解和使用这些工具。
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
【赵渝强老师】Flink生态圈组件
Flink 是一个大数据计算引擎,支持批处理和流处理。其优势在于流处理引擎 DataStream。Flink 的生态圈分为三层:平台部署层、核心引擎层和 API&Library 层。平台部署层支持多种部署模式,核心引擎层负责任务执行,API&Library 层提供丰富的开发工具。
FlinkKafkaConsumer相同group.id多个任务消费kafka问题
当使用FlinkKafkaConsumer消费Kafka时,即使设置了相同的group.id,由于Flink内部管理partition的消费offset,两个程序仍能同时消费所有数据。这与KafkaConsumer不同,后者严格遵循消费组隔离原则,避免重复消费同一分区的数据。Flink为实现exactly-once语义,需要独立管理offset,这导致了上述现象。
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
参与Flink社区活动,免费赢取FFA大会两日通票~
Flink Forward Asia 2024 将于 11 月 29-30 日在上海举行,庆祝 Apache Flink 诞生十周年。大会将回顾 Flink 的技术成就,展望未来十年的发展,并介绍 Flink 2.0 版本。通过三种参与方式,您有机会免费赢取大会两日通票和 Flink 专属周边。