阿里云acp题目分享 阿里云acp认证考试形式和试卷结构
近几年以来,国内云服务云计算领域发展迅猛,上一年度阿里云以46.4%占有率高居国内第一,以9.8%占有率居于世界第三,相对于国内其他厂商优势巨大。超大的市场份额,促进上下游产业链的发展,同时也提升了对专业技术人员的需求量。每年都有大量的专业人员选择参加阿里云的各项资格认证以期望从跨入该行业。为了帮助考生能更好地了解阿里云acp认证,今天就分享部分阿里云acp题目,并介绍考试形式和试卷结构。
流计算引擎数据一致性的本质
本篇文章从流计算的本质出发,重点分析流计算领域中数据处理的一致性问题,同时对一致性问题进行简单的形式化定义,提供一个一窥当下流计算引擎发展脉络的视角,让大家对流计算引擎的认识更为深入,为可能的流计算技术选型提供一些参考。
基于Tablestore 实现大规模订单系统海量订单/日志数据分类存储的实践
前言:从最早的互联网高速发展、到移动互联网的爆发式增长,再到今天的产业互联网、物联网的快速崛起,各种各样新应用、新系统产生了众多订单类型的需求,比如电商购物订单、银行流水、运营商话费账单、外卖订单、设备信息等,产生的数据种类和数据量越来越多;其中订单系统就是一个非常广泛、通用的系统。而随着数据规模的快速增长、大数据技术的发展、运营水平的不断提高,包括数据消费的能力要求越来越高,这对支撑订单系统的数据库设计、存储系统也提出了更多的要求。在新的需求下,传统的经典架构面临着诸多挑战,需要进一步思考架构优化,以更好支撑业务发展;
《玩转 Tablestore 入门与实战》重磅来袭! 架构、原理及场景全方面解读
表格存储 Tablestore 是阿里云自研的面向海量结构化和半结构化数据的 Serverless 多模型数据存储,采用与 Google Bigtable 类似的宽表模型,天然的分布式架构,能支撑高吞吐的数据写入以及 PB 级数据存储。
表格存储 Tablestore于 2009 年阿里云成立之初即立项研发,基于底层飞天平台从零开始构建,在 2014 年正式商业化面向公有云提供服务。历经 10 年多的打磨,目前已在阿里巴巴集团、阿里云公共云以及专有云内得到广泛应用,涵盖电商、金融风控、物联网、人工智能、大数据、社交媒体等不同业务领域,支撑钉钉、优酷、手淘、IoT、计算平台等多个内部核心 BU
Serverless Devs 2.0 开箱测评:Serverless 开发最佳实践
当下,Serverless 概念很火,很多同学被 Serverless 的优势吸引过来,比如它的弹性伸缩,免运维,高可用,资费少。但真正使用起来去落地的时候发现问题很多,大型项目如何组织函数,性能优化怎么做,怎么做Serverless调试,数据库,共享会话怎么加等等。上周,Serverless Devs 2.0 正式版全新发布。Serverless Devs 2.0 在平台能力、应用模板以及开发者套件方面能力提升。本文以 Serverless Devs 的应用中心(web 版)为案例,来看开箱实践方案。
从 0 到 1 通过 Flink + Tablestore 进行大数据处理与分析
阿里云实时计算Flink版是一套基于 Apache Flink 构建的⼀站式实时大数据分析平台。在大数据场景下,实时计算 Flink 可提供端到端亚秒级实时数据流批处理能力。表格存储 Tablestore (又名 OTS)是阿里云自研的多模型结构化数据存储,可提供海量结构化数据的存储、查询分析服务。表格存储的双引擎架构支持千万TPS和毫秒级延迟的服务能力,可作为大数据计算的极佳上下游存储。
云原生大数据架构中实时计算维表和结果表的选型实践
前言传统的大数据技术起源于 Google 三架马车 GFS、MapReduce、Bigtable,以及其衍生的开源分布式文件系统 HDFS,分布式计算引擎 MapReduce,以及分布式数据库 HBase。最初的大数据技术与需求往往集中在超大规模数据存储、数据处理、在线查询等。在这个阶段,很多公司会选择自建机房部署 Hadoop 的方式,大数据技术与需求集中在离线计算与大规模存储上,常见的体现方式