云数据库 MongoDB 版

首页 标签 云数据库 MongoDB 版
# 云数据库 MongoDB 版 #
关注
8806内容
|
11小时前
| |
来自: 数据库
MongoDB主备副本集方案:两台服务器使用非对称部署的方式实现高可用与容灾备份
在资源受限的情况下,为了实现MongoDB的高可用性,本文探讨了两种在两台服务器上部署MongoDB的方案。方案一是通过主备身份轮换,即一台服务器作为主节点,另一台同时部署备节点和仲裁节点;方案二是利用`priority`设置实现自动主备切换。两者相比,方案二自动化程度更高,适合追求快速故障恢复的场景,而方案一则提供了更多的手动控制选项。文章最后对比了这两种方案与标准三节点副本集的优缺点,指出三节点方案在高可用性和数据一致性方面表现更佳。
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB的In-Memory存储引擎
MongoDB的In-Memory存储引擎将数据存储在内存中,显著减少查询延迟,提高性能。该引擎不会将数据持久化到硬盘,仅在内存中存储,因此重启后数据会丢失。本文通过创建目录、配置文件、启动服务、插入数据和查询等步骤,详细演示了如何使用In-Memory存储引擎。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB的WiredTiger存储引擎
MongoDB WiredTiger存储引擎自3.2版本起成为默认选择,提供文档级别的并发控制、检查点、数据压缩和本地加密等功能。本文详细介绍了WiredTiger的并发控制机制、预写日志与检查点、内存使用、数据压缩及磁盘空间回收等特性。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB的MMAPv1存储引擎
在MongoDB 3.2版本之前,默认使用MMAPv1存储引擎。MMAPv1包括Database、Namespace、数据文件、Extent和Record等组件。每个Database由名称空间文件和数据文件组成,数据文件按编号递增,大小从64MB到2GB。每个数据文件被划分为多个Extent,每个Extent包含多个Record,对应MongoDB中的文档。通过一个示例展示了如何配置和使用MMAPv1存储引擎。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB的存储引擎
存储引擎是MongoDB的核心组件,负责管理数据在硬盘和内存中的存储方式。从3.2版本起,MongoDB支持WiredTiger、MMAPv1和In-Memory三种存储引擎。WiredTiger为默认引擎,提供文档级并发控制和数据压缩;MMAPv1在3.2版本前为默认引擎,4.x版本后不再支持;In-Memory引擎将数据存储在内存中,减少查询延迟。
|
5天前
| |
来自: 数据库
【赵渝强老师】部署MongoDB复制集
本文介绍了如何在单个节点上搭建MongoDB复制集环境,通过监听不同端口实现多节点配置。详细步骤包括创建数据目录、编辑配置文件、启动节点、初始化复制集、查看状态以及测试主从库的读写操作。文中还提供了视频讲解和代码示例,帮助读者更好地理解和操作。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB复制集中的成员
MongoDB复制集通常由一个主库和两个从库组成,可选添加仲裁者。主库负责所有写操作并记录Oplog日志,从库异步同步主库的Oplog日志并应用操作。仲裁者不存储数据,主要用于保证复制集中成员数量为奇数,参与选举投票。视频讲解详见B站链接。
|
5天前
| |
来自: 数据库
【赵渝强老师】MongoDB复制集的体系架构
MongoDB的复制集是一种集群技术,由一个Primary节点和多个Secondary节点组成,实现数据的高可用性。Primary节点处理写入请求,Secondary节点同步数据。当Primary节点故障时,Secondary节点可通过选举成为新的Primary节点。视频讲解和示意图详见正文。
免费试用